2025-05-10 21:58:58 +08:00

1392 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Rockchip CIF Driver
*
* Copyright (C) 2018 Rockchip Electronics Co., Ltd.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/reset.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <media/videobuf2-dma-contig.h>
#include <media/v4l2-fwnode.h>
#include <linux/iommu.h>
#include <dt-bindings/soc/rockchip-system-status.h>
#include <soc/rockchip/rockchip-system-status.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include "dev.h"
#include "procfs.h"
#define RKCIF_VERNO_LEN 10
int rkcif_debug;
module_param_named(debug, rkcif_debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
static char rkcif_version[RKCIF_VERNO_LEN];
module_param_string(version, rkcif_version, RKCIF_VERNO_LEN, 0444);
MODULE_PARM_DESC(version, "version number");
static DEFINE_MUTEX(rkcif_dev_mutex);
static LIST_HEAD(rkcif_device_list);
/* show the compact mode of each stream in stream index order,
* 1 for compact, 0 for 16bit
*/
static ssize_t rkcif_show_compact_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int ret;
ret = snprintf(buf, PAGE_SIZE, "%d %d %d %d\n",
cif_dev->stream[0].is_compact ? 1 : 0,
cif_dev->stream[1].is_compact ? 1 : 0,
cif_dev->stream[2].is_compact ? 1 : 0,
cif_dev->stream[3].is_compact ? 1 : 0);
return ret;
}
static ssize_t rkcif_store_compact_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int i, index;
char val[4];
if (buf) {
index = 0;
for (i = 0; i < len; i++) {
if (buf[i] == ' ') {
continue;
} else if (buf[i] == '\0') {
break;
} else {
val[index] = buf[i];
index++;
if (index == 4)
break;
}
}
for (i = 0; i < index; i++) {
if (val[i] - '0' == 0)
cif_dev->stream[i].is_compact = false;
else
cif_dev->stream[i].is_compact = true;
}
}
return len;
}
static ssize_t rkcif_show_line_int_num(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int ret;
ret = snprintf(buf, PAGE_SIZE, "%d\n",
cif_dev->wait_line_cache);
return ret;
}
static ssize_t rkcif_store_line_int_num(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int val = 0;
int ret = 0;
ret = kstrtoint(buf, 0, &val);
if (!ret && val >= 0 && val <= 0x3fff)
cif_dev->wait_line_cache = val;
else
dev_info(cif_dev->dev, "set line int num failed\n");
return len;
}
static ssize_t rkcif_show_dummybuf_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int ret;
ret = snprintf(buf, PAGE_SIZE, "%d\n",
cif_dev->is_use_dummybuf);
return ret;
}
static ssize_t rkcif_store_dummybuf_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int val = 0;
int ret = 0;
ret = kstrtoint(buf, 0, &val);
if (!ret) {
if (val)
cif_dev->is_use_dummybuf = true;
else
cif_dev->is_use_dummybuf = false;
} else {
dev_info(cif_dev->dev, "set dummy buf mode failed\n");
}
return len;
}
/* show the compact mode of each stream in stream index order,
* 1 for compact, 0 for 16bit
*/
static ssize_t rkcif_show_memory_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int ret;
ret = snprintf(buf, PAGE_SIZE,
"stream[0~3] %d %d %d %d, 0(low align) 1(high align) 2(compact)\n",
cif_dev->stream[0].is_compact ? 2 : (cif_dev->stream[0].is_high_align ? 1 : 0),
cif_dev->stream[1].is_compact ? 2 : (cif_dev->stream[1].is_high_align ? 1 : 0),
cif_dev->stream[2].is_compact ? 2 : (cif_dev->stream[2].is_high_align ? 1 : 0),
cif_dev->stream[3].is_compact ? 2 : (cif_dev->stream[3].is_high_align ? 1 : 0));
return ret;
}
static ssize_t rkcif_store_memory_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct rkcif_device *cif_dev = (struct rkcif_device *)dev_get_drvdata(dev);
int i, index;
char val[4];
if (buf) {
index = 0;
for (i = 0; i < len; i++) {
if (buf[i] == ' ') {
continue;
} else if (buf[i] == '\0') {
break;
} else {
val[index] = buf[i];
index++;
if (index == 4)
break;
}
}
for (i = 0; i < index; i++) {
if (cif_dev->stream[i].is_compact) {
dev_info(cif_dev->dev, "stream[%d] set memory align fail, is compact mode\n",
i);
continue;
}
if (val[i] - '0' == 0)
cif_dev->stream[i].is_high_align = false;
else
cif_dev->stream[i].is_high_align = true;
}
}
return len;
}
static DEVICE_ATTR(compact_test, S_IWUSR | S_IRUSR,
rkcif_show_compact_mode, rkcif_store_compact_mode);
static DEVICE_ATTR(wait_line, S_IWUSR | S_IRUSR,
rkcif_show_line_int_num, rkcif_store_line_int_num);
static DEVICE_ATTR(is_use_dummybuf, S_IWUSR | S_IRUSR,
rkcif_show_dummybuf_mode, rkcif_store_dummybuf_mode);
static DEVICE_ATTR(is_high_align, S_IWUSR | S_IRUSR,
rkcif_show_memory_mode, rkcif_store_memory_mode);
static struct attribute *dev_attrs[] = {
&dev_attr_compact_test.attr,
&dev_attr_wait_line.attr,
&dev_attr_is_use_dummybuf.attr,
&dev_attr_is_high_align.attr,
NULL,
};
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
struct rkcif_match_data {
int inf_id;
};
void rkcif_write_register(struct rkcif_device *dev,
enum cif_reg_index index, u32 val)
{
void __iomem *base = dev->hw_dev->base_addr;
const struct cif_reg *reg = &dev->hw_dev->cif_regs[index];
if (index < CIF_REG_INDEX_MAX) {
if (index == CIF_REG_DVP_CTRL ||
(index != CIF_REG_DVP_CTRL && reg->offset != 0x0))
write_cif_reg(base, reg->offset, val);
else
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"write reg[%d]:0x%x failed, maybe useless!!!\n",
index, val);
}
}
void rkcif_write_register_or(struct rkcif_device *dev,
enum cif_reg_index index, u32 val)
{
unsigned int reg_val = 0x0;
void __iomem *base = dev->hw_dev->base_addr;
const struct cif_reg *reg = &dev->hw_dev->cif_regs[index];
if (index < CIF_REG_INDEX_MAX) {
if (index == CIF_REG_DVP_CTRL ||
(index != CIF_REG_DVP_CTRL && reg->offset != 0x0)) {
reg_val = read_cif_reg(base, reg->offset);
reg_val |= val;
write_cif_reg(base, reg->offset, reg_val);
} else {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"write reg[%d]:0x%x with OR failed, maybe useless!!!\n",
index, val);
}
}
}
void rkcif_write_register_and(struct rkcif_device *dev,
enum cif_reg_index index, u32 val)
{
unsigned int reg_val = 0x0;
void __iomem *base = dev->hw_dev->base_addr;
const struct cif_reg *reg = &dev->hw_dev->cif_regs[index];
if (index < CIF_REG_INDEX_MAX) {
if (index == CIF_REG_DVP_CTRL ||
(index != CIF_REG_DVP_CTRL && reg->offset != 0x0)) {
reg_val = read_cif_reg(base, reg->offset);
reg_val &= val;
write_cif_reg(base, reg->offset, reg_val);
} else {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"write reg[%d]:0x%x with OR failed, maybe useless!!!\n",
index, val);
}
}
}
unsigned int rkcif_read_register(struct rkcif_device *dev,
enum cif_reg_index index)
{
unsigned int val = 0x0;
void __iomem *base = dev->hw_dev->base_addr;
const struct cif_reg *reg = &dev->hw_dev->cif_regs[index];
if (index < CIF_REG_INDEX_MAX) {
if (index == CIF_REG_DVP_CTRL ||
(index != CIF_REG_DVP_CTRL && reg->offset != 0x0))
val = read_cif_reg(base, reg->offset);
else
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"read reg[%d] failed, maybe useless!!!\n",
index);
}
return val;
}
void rkcif_write_grf_reg(struct rkcif_device *dev,
enum cif_reg_index index, u32 val)
{
struct rkcif_hw *cif_hw = dev->hw_dev;
const struct cif_reg *reg = &cif_hw->cif_regs[index];
if (index < CIF_REG_INDEX_MAX) {
if (index > CIF_REG_DVP_CTRL) {
if (!IS_ERR(cif_hw->grf))
regmap_write(cif_hw->grf, reg->offset, val);
} else {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"write reg[%d]:0x%x failed, maybe useless!!!\n",
index, val);
}
}
}
u32 rkcif_read_grf_reg(struct rkcif_device *dev, enum cif_reg_index index)
{
struct rkcif_hw *cif_hw = dev->hw_dev;
const struct cif_reg *reg = &cif_hw->cif_regs[index];
u32 val = 0xffff;
if (index < CIF_REG_INDEX_MAX) {
if (index > CIF_REG_DVP_CTRL) {
if (!IS_ERR(cif_hw->grf))
regmap_read(cif_hw->grf, reg->offset, &val);
} else {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"read reg[%d] failed, maybe useless!!!\n",
index);
}
}
return val;
}
void rkcif_enable_dvp_clk_dual_edge(struct rkcif_device *dev, bool on)
{
struct rkcif_hw *cif_hw = dev->hw_dev;
u32 val = 0x0;
if (!IS_ERR(cif_hw->grf)) {
if (dev->chip_id == CHIP_RK3568_CIF) {
if (on)
val = RK3568_CIF_PCLK_DUAL_EDGE;
else
val = RK3568_CIF_PCLK_SINGLE_EDGE;
rkcif_write_grf_reg(dev, CIF_REG_GRF_CIFIO_CON1, val);
} else if (dev->chip_id == CHIP_RV1126_CIF) {
if (on)
val = CIF_SAMPLING_EDGE_DOUBLE;
else
val = CIF_SAMPLING_EDGE_SINGLE;
rkcif_write_grf_reg(dev, CIF_REG_GRF_CIFIO_CON, val);
}
}
v4l2_info(&dev->v4l2_dev,
"set dual edge mode(%s,0x%x)!!!\n", on ? "on" : "off", val);
}
void rkcif_config_dvp_clk_sampling_edge(struct rkcif_device *dev,
enum rkcif_clk_edge edge)
{
struct rkcif_hw *cif_hw = dev->hw_dev;
u32 val = 0x0;
if (!IS_ERR(cif_hw->grf)) {
if (dev->chip_id == CHIP_RV1126_CIF) {
if (edge == RKCIF_CLK_RISING)
val = CIF_PCLK_SAMPLING_EDGE_RISING;
else
val = CIF_PCLK_SAMPLING_EDGE_FALLING;
}
if (dev->chip_id == CHIP_RK3568_CIF) {
if (edge == RKCIF_CLK_RISING)
val = RK3568_CIF_PCLK_SAMPLING_EDGE_RISING;
else
val = RK3568_CIF_PCLK_SAMPLING_EDGE_FALLING;
}
rkcif_write_grf_reg(dev, CIF_REG_GRF_CIFIO_CON, val);
}
}
/**************************** pipeline operations *****************************/
static int __cif_pipeline_prepare(struct rkcif_pipeline *p,
struct media_entity *me)
{
struct v4l2_subdev *sd;
int i;
p->num_subdevs = 0;
memset(p->subdevs, 0, sizeof(p->subdevs));
while (1) {
struct media_pad *pad = NULL;
/* Find remote source pad */
for (i = 0; i < me->num_pads; i++) {
struct media_pad *spad = &me->pads[i];
if (!(spad->flags & MEDIA_PAD_FL_SINK))
continue;
pad = media_entity_remote_pad(spad);
if (pad)
break;
}
if (!pad)
break;
sd = media_entity_to_v4l2_subdev(pad->entity);
p->subdevs[p->num_subdevs++] = sd;
me = &sd->entity;
if (me->num_pads == 1)
break;
}
return 0;
}
static int __cif_pipeline_s_cif_clk(struct rkcif_pipeline *p)
{
return 0;
}
static int rkcif_pipeline_open(struct rkcif_pipeline *p,
struct media_entity *me,
bool prepare)
{
int ret;
if (WARN_ON(!p || !me))
return -EINVAL;
if (atomic_inc_return(&p->power_cnt) > 1)
return 0;
/* go through media graphic and get subdevs */
if (prepare)
__cif_pipeline_prepare(p, me);
if (!p->num_subdevs)
return -EINVAL;
ret = __cif_pipeline_s_cif_clk(p);
if (ret < 0)
return ret;
return 0;
}
static int rkcif_pipeline_close(struct rkcif_pipeline *p)
{
atomic_dec_return(&p->power_cnt);
return 0;
}
/*
* stream-on order: isp_subdev, mipi dphy, sensor
* stream-off order: mipi dphy, sensor, isp_subdev
*/
static int rkcif_pipeline_set_stream(struct rkcif_pipeline *p, bool on)
{
struct rkcif_device *cif_dev = container_of(p, struct rkcif_device, pipe);
struct rkcif_stream *stream = NULL;
bool can_be_set = false;
int i, ret;
if (cif_dev->hdr.mode == NO_HDR) {
if ((on && atomic_inc_return(&p->stream_cnt) > 1) ||
(!on && atomic_dec_return(&p->stream_cnt) > 0))
return 0;
if (on) {
rockchip_set_system_status(SYS_STATUS_CIF0);
cif_dev->irq_stats.csi_overflow_cnt = 0;
cif_dev->irq_stats.csi_bwidth_lack_cnt = 0;
cif_dev->irq_stats.dvp_bus_err_cnt = 0;
cif_dev->irq_stats.dvp_line_err_cnt = 0;
cif_dev->irq_stats.dvp_overflow_cnt = 0;
cif_dev->irq_stats.dvp_pix_err_cnt = 0;
cif_dev->irq_stats.all_err_cnt = 0;
cif_dev->irq_stats.all_frm_end_cnt = 0;
cif_dev->reset_watchdog_timer.is_triggered = false;
for (i = 0; i < cif_dev->num_channels; i++)
cif_dev->reset_watchdog_timer.last_buf_wakeup_cnt[i] = 0;
}
/* phy -> sensor */
for (i = 0; i < p->num_subdevs; i++) {
ret = v4l2_subdev_call(p->subdevs[i], video, s_stream, on);
if (on && ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
goto err_stream_off;
}
if (on)
rkcif_monitor_reset_event(cif_dev->hw_dev);
} else {
if (!on && atomic_dec_return(&p->stream_cnt) > 0)
return 0;
if (on) {
atomic_inc(&p->stream_cnt);
if (cif_dev->hdr.mode == HDR_X2) {
if (atomic_read(&p->stream_cnt) == 1) {
rockchip_set_system_status(SYS_STATUS_CIF0);
can_be_set = false;
} else if (atomic_read(&p->stream_cnt) == 2) {
can_be_set = true;
}
} else if (cif_dev->hdr.mode == HDR_X3) {
if (atomic_read(&p->stream_cnt) == 1) {
rockchip_set_system_status(SYS_STATUS_CIF0);
can_be_set = false;
} else if (atomic_read(&p->stream_cnt) == 3) {
can_be_set = true;
}
}
}
if ((on && can_be_set) || !on) {
if (on) {
cif_dev->irq_stats.csi_overflow_cnt = 0;
cif_dev->irq_stats.csi_bwidth_lack_cnt = 0;
cif_dev->irq_stats.dvp_bus_err_cnt = 0;
cif_dev->irq_stats.dvp_line_err_cnt = 0;
cif_dev->irq_stats.dvp_overflow_cnt = 0;
cif_dev->irq_stats.dvp_pix_err_cnt = 0;
cif_dev->irq_stats.all_err_cnt = 0;
cif_dev->irq_stats.all_frm_end_cnt = 0;
cif_dev->is_start_hdr = true;
cif_dev->reset_watchdog_timer.is_triggered = false;
for (i = 0; i < cif_dev->num_channels; i++)
cif_dev->reset_watchdog_timer.last_buf_wakeup_cnt[i] = 0;
}
/* phy -> sensor */
for (i = 0; i < p->num_subdevs; i++) {
ret = v4l2_subdev_call(p->subdevs[i], video, s_stream, on);
if (on && ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
goto err_stream_off;
}
if (on) {
rkcif_monitor_reset_event(cif_dev->hw_dev);
for (i = 0; i < atomic_read(&p->stream_cnt); i++) {
stream = &cif_dev->stream[i];
stream->streamon_timestamp = ktime_get_ns();
}
}
}
}
if (!on)
rockchip_clear_system_status(SYS_STATUS_CIF0);
return 0;
err_stream_off:
for (--i; i >= 0; --i)
v4l2_subdev_call(p->subdevs[i], video, s_stream, false);
rockchip_clear_system_status(SYS_STATUS_CIF0);
return ret;
}
/***************************** media controller *******************************/
static int rkcif_create_links(struct rkcif_device *dev)
{
int ret;
u32 flags;
unsigned int s, pad, id, stream_num = 0;
bool mipi_lvds_linked = false;
if (dev->chip_id < CHIP_RV1126_CIF) {
if (dev->inf_id == RKCIF_MIPI_LVDS)
stream_num = RKCIF_MAX_STREAM_MIPI;
else
stream_num = RKCIF_SINGLE_STREAM;
} else {
stream_num = RKCIF_MAX_STREAM_MIPI;
}
/* sensor links(or mipi-phy) */
for (s = 0; s < dev->num_sensors; ++s) {
struct rkcif_sensor_info *sensor = &dev->sensors[s];
struct rkcif_sensor_info linked_sensor;
struct media_entity *source_entity, *sink_entity;
linked_sensor.lanes = sensor->lanes;
if (sensor->mbus.type == V4L2_MBUS_CCP2) {
linked_sensor.sd = &dev->lvds_subdev.sd;
dev->lvds_subdev.sensor_self.sd = &dev->lvds_subdev.sd;
dev->lvds_subdev.sensor_self.lanes = sensor->lanes;
memcpy(&dev->lvds_subdev.sensor_self.mbus, &sensor->mbus,
sizeof(struct v4l2_mbus_config));
} else {
linked_sensor.sd = sensor->sd;
}
memcpy(&linked_sensor.mbus, &sensor->mbus,
sizeof(struct v4l2_mbus_config));
for (pad = 0; pad < linked_sensor.sd->entity.num_pads; pad++) {
if (linked_sensor.sd->entity.pads[pad].flags &
MEDIA_PAD_FL_SOURCE) {
if (pad == linked_sensor.sd->entity.num_pads) {
dev_err(dev->dev,
"failed to find src pad for %s\n",
linked_sensor.sd->name);
break;
}
if ((linked_sensor.mbus.type == V4L2_MBUS_BT656 ||
linked_sensor.mbus.type == V4L2_MBUS_PARALLEL) &&
(dev->chip_id == CHIP_RK1808_CIF)) {
source_entity = &linked_sensor.sd->entity;
sink_entity = &dev->stream[RKCIF_STREAM_CIF].vnode.vdev.entity;
ret = media_create_pad_link(source_entity,
pad,
sink_entity,
0,
MEDIA_LNK_FL_ENABLED);
if (ret)
dev_err(dev->dev, "failed to create link for %s\n",
linked_sensor.sd->name);
break;
}
if ((linked_sensor.mbus.type == V4L2_MBUS_BT656 ||
linked_sensor.mbus.type == V4L2_MBUS_PARALLEL) &&
(dev->chip_id >= CHIP_RV1126_CIF)) {
source_entity = &linked_sensor.sd->entity;
sink_entity = &dev->stream[pad].vnode.vdev.entity;
ret = media_create_pad_link(source_entity,
pad,
sink_entity,
0,
MEDIA_LNK_FL_ENABLED);
if (ret)
dev_err(dev->dev, "failed to create link for %s pad[%d]\n",
linked_sensor.sd->name, pad);
continue;
}
for (id = 0; id < stream_num; id++) {
source_entity = &linked_sensor.sd->entity;
sink_entity = &dev->stream[id].vnode.vdev.entity;
if ((dev->chip_id != CHIP_RK1808_CIF &&
dev->chip_id != CHIP_RV1126_CIF &&
dev->chip_id != CHIP_RV1126_CIF_LITE &&
dev->chip_id != CHIP_RK3568_CIF) ||
(id == pad - 1 && !mipi_lvds_linked))
flags = MEDIA_LNK_FL_ENABLED;
else
flags = 0;
ret = media_create_pad_link(source_entity,
pad,
sink_entity,
0,
flags);
if (ret) {
dev_err(dev->dev,
"failed to create link for %s\n",
linked_sensor.sd->name);
break;
}
}
}
}
if (sensor->mbus.type == V4L2_MBUS_CCP2) {
source_entity = &sensor->sd->entity;
sink_entity = &linked_sensor.sd->entity;
ret = media_create_pad_link(source_entity,
1,
sink_entity,
0,
MEDIA_LNK_FL_ENABLED);
if (ret)
dev_err(dev->dev, "failed to create link between %s and %s\n",
linked_sensor.sd->name,
sensor->sd->name);
}
if (linked_sensor.mbus.type != V4L2_MBUS_BT656 &&
linked_sensor.mbus.type != V4L2_MBUS_PARALLEL)
mipi_lvds_linked = true;
}
return 0;
}
static int _set_pipeline_default_fmt(struct rkcif_device *dev)
{
rkcif_set_default_fmt(dev);
return 0;
}
static int subdev_asyn_register_itf(struct rkcif_device *dev)
{
struct sditf_priv *sditf = dev->sditf;
int ret = 0;
if (sditf)
ret = v4l2_async_register_subdev_sensor_common(&sditf->sd);
return ret;
}
static int subdev_notifier_complete(struct v4l2_async_notifier *notifier)
{
struct rkcif_device *dev;
struct rkcif_sensor_info *sensor;
struct v4l2_subdev *sd;
struct v4l2_device *v4l2_dev = NULL;
int ret, index;
dev = container_of(notifier, struct rkcif_device, notifier);
v4l2_dev = &dev->v4l2_dev;
for (index = 0; index < dev->num_sensors; index++) {
sensor = &dev->sensors[index];
list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
if (sd->ops) {
if (sd == sensor->sd) {
ret = v4l2_subdev_call(sd,
video,
g_mbus_config,
&sensor->mbus);
if (ret)
v4l2_err(v4l2_dev,
"get mbus config failed for linking\n");
}
}
}
if (sensor->mbus.type == V4L2_MBUS_CCP2 ||
sensor->mbus.type == V4L2_MBUS_CSI2) {
switch (sensor->mbus.flags & V4L2_MBUS_CSI2_LANES) {
case V4L2_MBUS_CSI2_1_LANE:
sensor->lanes = 1;
break;
case V4L2_MBUS_CSI2_2_LANE:
sensor->lanes = 2;
break;
case V4L2_MBUS_CSI2_3_LANE:
sensor->lanes = 3;
break;
case V4L2_MBUS_CSI2_4_LANE:
sensor->lanes = 4;
break;
default:
sensor->lanes = 1;
}
}
if (sensor->mbus.type == V4L2_MBUS_CCP2) {
ret = rkcif_register_lvds_subdev(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev,
"Err: register lvds subdev failed!!!\n");
goto notifier_end;
}
break;
}
if (sensor->mbus.type == V4L2_MBUS_PARALLEL ||
sensor->mbus.type == V4L2_MBUS_BT656) {
ret = rkcif_register_dvp_sof_subdev(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev,
"Err: register dvp sof subdev failed!!!\n");
goto notifier_end;
}
break;
}
}
ret = rkcif_create_links(dev);
if (ret < 0)
goto unregister_lvds;
ret = v4l2_device_register_subdev_nodes(&dev->v4l2_dev);
if (ret < 0)
goto unregister_lvds;
ret = _set_pipeline_default_fmt(dev);
if (ret < 0)
goto unregister_lvds;
v4l2_info(&dev->v4l2_dev, "Async subdev notifier completed\n");
return ret;
unregister_lvds:
rkcif_unregister_lvds_subdev(dev);
rkcif_unregister_dvp_sof_subdev(dev);
notifier_end:
return ret;
}
struct rkcif_async_subdev {
struct v4l2_async_subdev asd;
struct v4l2_mbus_config mbus;
int lanes;
};
static int subdev_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct rkcif_device *cif_dev = container_of(notifier,
struct rkcif_device, notifier);
struct rkcif_async_subdev *s_asd = container_of(asd,
struct rkcif_async_subdev, asd);
if (cif_dev->num_sensors == ARRAY_SIZE(cif_dev->sensors)) {
v4l2_err(&cif_dev->v4l2_dev,
"%s: the num of subdev is beyond %d\n",
__func__, cif_dev->num_sensors);
return -EBUSY;
}
cif_dev->sensors[cif_dev->num_sensors].lanes = s_asd->lanes;
cif_dev->sensors[cif_dev->num_sensors].mbus = s_asd->mbus;
cif_dev->sensors[cif_dev->num_sensors].sd = subdev;
++cif_dev->num_sensors;
v4l2_err(subdev, "Async registered subdev\n");
return 0;
}
static int rkcif_fwnode_parse(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd)
{
struct rkcif_async_subdev *rk_asd =
container_of(asd, struct rkcif_async_subdev, asd);
struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
if (vep->bus_type != V4L2_MBUS_BT656 &&
vep->bus_type != V4L2_MBUS_PARALLEL &&
vep->bus_type != V4L2_MBUS_CSI2 &&
vep->bus_type != V4L2_MBUS_CCP2)
return 0;
rk_asd->mbus.type = vep->bus_type;
if (vep->bus_type == V4L2_MBUS_CSI2) {
rk_asd->mbus.flags = vep->bus.mipi_csi2.flags;
rk_asd->lanes = vep->bus.mipi_csi2.num_data_lanes;
} else if (vep->bus_type == V4L2_MBUS_CCP2) {
rk_asd->lanes = vep->bus.mipi_csi1.data_lane;
} else {
rk_asd->mbus.flags = bus->flags;
}
return 0;
}
static const struct v4l2_async_notifier_operations subdev_notifier_ops = {
.bound = subdev_notifier_bound,
.complete = subdev_notifier_complete,
};
static int cif_subdev_notifier(struct rkcif_device *cif_dev)
{
struct v4l2_async_notifier *ntf = &cif_dev->notifier;
struct device *dev = cif_dev->dev;
int ret;
ret = v4l2_async_notifier_parse_fwnode_endpoints(
dev, ntf, sizeof(struct rkcif_async_subdev), rkcif_fwnode_parse);
if (ret < 0) {
v4l2_err(&cif_dev->v4l2_dev,
"%s: parse fwnode failed\n", __func__);
return ret;
}
if (!ntf->num_subdevs) {
v4l2_warn(&cif_dev->v4l2_dev,
"%s: no subdev be found!\n", __func__);
return -ENODEV; /* no endpoint */
}
ntf->ops = &subdev_notifier_ops;
ret = v4l2_async_notifier_register(&cif_dev->v4l2_dev, ntf);
return ret;
}
/***************************** platform deive *******************************/
static int rkcif_register_platform_subdevs(struct rkcif_device *cif_dev)
{
int stream_num = 0, ret;
if (cif_dev->chip_id < CHIP_RV1126_CIF) {
if (cif_dev->inf_id == RKCIF_MIPI_LVDS) {
stream_num = RKCIF_MAX_STREAM_MIPI;
ret = rkcif_register_stream_vdevs(cif_dev, stream_num,
true);
} else {
stream_num = RKCIF_SINGLE_STREAM;
ret = rkcif_register_stream_vdevs(cif_dev, stream_num,
false);
}
} else {
stream_num = RKCIF_MAX_STREAM_MIPI;
ret = rkcif_register_stream_vdevs(cif_dev, stream_num, true);
}
cif_dev->num_channels = stream_num;
if (ret < 0) {
dev_err(cif_dev->dev, "cif register stream[%d] failed!\n", stream_num);
return -EINVAL;
}
ret = cif_subdev_notifier(cif_dev);
if (ret < 0) {
v4l2_err(&cif_dev->v4l2_dev,
"Failed to register subdev notifier(%d)\n", ret);
goto err_unreg_stream_vdev;
}
return 0;
err_unreg_stream_vdev:
rkcif_unregister_stream_vdevs(cif_dev, stream_num);
return ret;
}
static irqreturn_t rkcif_irq_handler(int irq, struct rkcif_device *cif_dev)
{
if (cif_dev->workmode == RKCIF_WORKMODE_PINGPONG)
rkcif_irq_pingpong(cif_dev);
else
rkcif_irq_oneframe(cif_dev);
return IRQ_HANDLED;
}
static irqreturn_t rkcif_irq_lite_handler(int irq, struct rkcif_device *cif_dev)
{
rkcif_irq_lite_lvds(cif_dev);
return IRQ_HANDLED;
}
void rkcif_soft_reset(struct rkcif_device *cif_dev, bool is_rst_iommu)
{
struct rkcif_hw *hw_dev = cif_dev->hw_dev;
bool can_reset = true;
int i;
if (!cif_dev->hw_dev)
return;
for (i = 0; i < hw_dev->dev_num; i++)
if (atomic_read(&hw_dev->cif_dev[i]->pipe.stream_cnt) != 0) {
can_reset = false;
break;
}
if (can_reset)
rkcif_hw_soft_reset(cif_dev->hw_dev, is_rst_iommu);
}
int rkcif_attach_hw(struct rkcif_device *cif_dev)
{
struct device_node *np;
struct platform_device *pdev;
struct rkcif_hw *hw;
if (cif_dev->hw_dev)
return 0;
cif_dev->chip_id = CHIP_RV1126_CIF_LITE;
np = of_parse_phandle(cif_dev->dev->of_node, "rockchip,hw", 0);
if (!np || !of_device_is_available(np)) {
dev_err(cif_dev->dev, "failed to get cif hw node\n");
return -ENODEV;
}
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev) {
dev_err(cif_dev->dev, "failed to get cif hw from node\n");
return -ENODEV;
}
hw = platform_get_drvdata(pdev);
if (!hw) {
dev_err(cif_dev->dev, "failed attach cif hw\n");
return -EINVAL;
}
hw->cif_dev[hw->dev_num] = cif_dev;
hw->dev_num++;
cif_dev->hw_dev = hw;
cif_dev->chip_id = hw->chip_id;
dev_info(cif_dev->dev, "attach to cif hw node\n");
return 0;
}
static int rkcif_detach_hw(struct rkcif_device *cif_dev)
{
struct rkcif_hw *hw = cif_dev->hw_dev;
int i;
for (i = 0; i < hw->dev_num; i++) {
if (hw->cif_dev[i] == cif_dev) {
if ((i + 1) < hw->dev_num) {
hw->cif_dev[i] = hw->cif_dev[i + 1];
hw->cif_dev[i + 1] = NULL;
} else {
hw->cif_dev[i] = NULL;
}
hw->dev_num--;
dev_info(cif_dev->dev, "detach to cif hw node\n");
break;
}
}
return 0;
}
static void rkcif_init_reset_monitor(struct rkcif_device *dev)
{
struct rkcif_timer *timer = &dev->reset_watchdog_timer;
struct notifier_block *notifier = &dev->reset_notifier;
timer->is_triggered = false;
timer->is_buf_stop_update = false;
timer->csi2_err_cnt_even = 0;
timer->csi2_err_cnt_odd = 0;
timer->csi2_err_fs_fe_cnt = 0;
timer->csi2_err_fs_fe_detect_cnt = 0;
timer->csi2_err_triggered_cnt = 0;
timer->csi2_first_err_timestamp = 0;
if (dev->inf_id == RKCIF_MIPI_LVDS) {
notifier->priority = 1;
notifier->notifier_call = rkcif_reset_notifier;
rkcif_csi2_register_notifier(notifier);
}
INIT_WORK(&dev->reset_work.work, rkcif_reset_work);
}
int rkcif_plat_init(struct rkcif_device *cif_dev, struct device_node *node, int inf_id)
{
struct device *dev = cif_dev->dev;
struct v4l2_device *v4l2_dev;
int ret;
cif_dev->hdr.mode = NO_HDR;
cif_dev->inf_id = inf_id;
mutex_init(&cif_dev->stream_lock);
spin_lock_init(&cif_dev->hdr_lock);
spin_lock_init(&cif_dev->reset_watchdog_timer.csi2_err_lock);
atomic_set(&cif_dev->pipe.power_cnt, 0);
atomic_set(&cif_dev->pipe.stream_cnt, 0);
atomic_set(&cif_dev->fh_cnt, 0);
cif_dev->is_start_hdr = false;
cif_dev->pipe.open = rkcif_pipeline_open;
cif_dev->pipe.close = rkcif_pipeline_close;
cif_dev->pipe.set_stream = rkcif_pipeline_set_stream;
cif_dev->isr_hdl = rkcif_irq_handler;
if (cif_dev->chip_id == CHIP_RV1126_CIF_LITE)
cif_dev->isr_hdl = rkcif_irq_lite_handler;
if (cif_dev->chip_id < CHIP_RV1126_CIF) {
if (cif_dev->inf_id == RKCIF_MIPI_LVDS) {
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID0);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID1);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID2);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID3);
} else {
rkcif_stream_init(cif_dev, RKCIF_STREAM_CIF);
}
} else {
/* for rv1126/rk356x, bt656/bt1120/mipi are multi channels */
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID0);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID1);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID2);
rkcif_stream_init(cif_dev, RKCIF_STREAM_MIPI_ID3);
}
#if defined(CONFIG_ROCKCHIP_CIF_WORKMODE_PINGPONG)
cif_dev->workmode = RKCIF_WORKMODE_PINGPONG;
#elif defined(CONFIG_ROCKCHIP_CIF_WORKMODE_ONEFRAME)
cif_dev->workmode = RKCIF_WORKMODE_ONEFRAME;
#else
cif_dev->workmode = RKCIF_WORKMODE_PINGPONG;
#endif
#if defined(CONFIG_ROCKCHIP_CIF_USE_DUMMY_BUF)
cif_dev->is_use_dummybuf = true;
#else
cif_dev->is_use_dummybuf = false;
#endif
strlcpy(cif_dev->media_dev.model, dev_name(dev),
sizeof(cif_dev->media_dev.model));
cif_dev->media_dev.dev = dev;
v4l2_dev = &cif_dev->v4l2_dev;
v4l2_dev->mdev = &cif_dev->media_dev;
strlcpy(v4l2_dev->name, dev_name(dev), sizeof(v4l2_dev->name));
ret = v4l2_device_register(cif_dev->dev, &cif_dev->v4l2_dev);
if (ret < 0)
return ret;
media_device_init(&cif_dev->media_dev);
ret = media_device_register(&cif_dev->media_dev);
if (ret < 0) {
v4l2_err(v4l2_dev, "Failed to register media device: %d\n",
ret);
goto err_unreg_v4l2_dev;
}
/* create & register platefom subdev (from of_node) */
ret = rkcif_register_platform_subdevs(cif_dev);
if (ret < 0)
goto err_unreg_media_dev;
if (cif_dev->chip_id == CHIP_RV1126_CIF ||
cif_dev->chip_id == CHIP_RV1126_CIF_LITE ||
cif_dev->chip_id == CHIP_RK3568_CIF)
rkcif_register_luma_vdev(&cif_dev->luma_vdev, v4l2_dev, cif_dev);
mutex_lock(&rkcif_dev_mutex);
list_add_tail(&cif_dev->list, &rkcif_device_list);
mutex_unlock(&rkcif_dev_mutex);
return 0;
err_unreg_media_dev:
media_device_unregister(&cif_dev->media_dev);
err_unreg_v4l2_dev:
v4l2_device_unregister(&cif_dev->v4l2_dev);
return ret;
}
int rkcif_plat_uninit(struct rkcif_device *cif_dev)
{
int stream_num = 0;
if (cif_dev->active_sensor->mbus.type == V4L2_MBUS_CCP2)
rkcif_unregister_lvds_subdev(cif_dev);
if (cif_dev->active_sensor->mbus.type == V4L2_MBUS_BT656 ||
cif_dev->active_sensor->mbus.type == V4L2_MBUS_PARALLEL)
rkcif_unregister_dvp_sof_subdev(cif_dev);
media_device_unregister(&cif_dev->media_dev);
v4l2_device_unregister(&cif_dev->v4l2_dev);
if (cif_dev->chip_id < CHIP_RV1126_CIF) {
if (cif_dev->inf_id == RKCIF_MIPI_LVDS)
stream_num = RKCIF_MAX_STREAM_MIPI;
else
stream_num = RKCIF_SINGLE_STREAM;
} else {
stream_num = RKCIF_MAX_STREAM_MIPI;
}
rkcif_unregister_stream_vdevs(cif_dev, stream_num);
return 0;
}
static const struct rkcif_match_data rkcif_dvp_match_data = {
.inf_id = RKCIF_DVP,
};
static const struct rkcif_match_data rkcif_mipi_lvds_match_data = {
.inf_id = RKCIF_MIPI_LVDS,
};
static const struct of_device_id rkcif_plat_of_match[] = {
{
.compatible = "rockchip,rkcif-dvp",
.data = &rkcif_dvp_match_data,
},
{
.compatible = "rockchip,rkcif-mipi-lvds",
.data = &rkcif_mipi_lvds_match_data,
},
{},
};
static void rkcif_parse_dts(struct rkcif_device *cif_dev)
{
int ret = 0;
struct device_node *node = cif_dev->dev->of_node;
ret = of_property_read_u32(node,
OF_CIF_WAIT_LINE,
&cif_dev->wait_line);
if (ret != 0)
cif_dev->wait_line = 0;
dev_info(cif_dev->dev, "rkcif wait line %d\n", cif_dev->wait_line);
}
static int rkcif_plat_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct rkcif_device *cif_dev;
const struct rkcif_match_data *data;
int ret;
sprintf(rkcif_version, "v%02x.%02x.%02x",
RKCIF_DRIVER_VERSION >> 16,
(RKCIF_DRIVER_VERSION & 0xff00) >> 8,
RKCIF_DRIVER_VERSION & 0x00ff);
dev_info(dev, "rkcif driver version: %s\n", rkcif_version);
match = of_match_node(rkcif_plat_of_match, node);
if (IS_ERR(match))
return PTR_ERR(match);
data = match->data;
cif_dev = devm_kzalloc(dev, sizeof(*cif_dev), GFP_KERNEL);
if (!cif_dev)
return -ENOMEM;
dev_set_drvdata(dev, cif_dev);
cif_dev->dev = dev;
rkcif_attach_hw(cif_dev);
rkcif_parse_dts(cif_dev);
ret = rkcif_plat_init(cif_dev, node, data->inf_id);
if (ret) {
rkcif_detach_hw(cif_dev);
return ret;
}
if (sysfs_create_group(&pdev->dev.kobj, &dev_attr_grp))
return -ENODEV;
if (rkcif_proc_init(cif_dev))
dev_warn(dev, "dev:%s create proc failed\n", dev_name(dev));
rkcif_init_reset_monitor(cif_dev);
rkcif_soft_reset(cif_dev, false);
pm_runtime_enable(&pdev->dev);
return 0;
}
static int rkcif_plat_remove(struct platform_device *pdev)
{
struct rkcif_device *cif_dev = platform_get_drvdata(pdev);
rkcif_plat_uninit(cif_dev);
rkcif_detach_hw(cif_dev);
rkcif_proc_cleanup(cif_dev);
rkcif_csi2_unregister_notifier(&cif_dev->reset_notifier);
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
return 0;
}
static int __maybe_unused rkcif_runtime_suspend(struct device *dev)
{
struct rkcif_device *cif_dev = dev_get_drvdata(dev);
int ret = 0;
if (atomic_dec_return(&cif_dev->hw_dev->power_cnt))
return 0;
mutex_lock(&cif_dev->hw_dev->dev_lock);
ret = pm_runtime_put_sync(cif_dev->hw_dev->dev);
mutex_unlock(&cif_dev->hw_dev->dev_lock);
return (ret > 0) ? 0 : ret;
}
static int __maybe_unused rkcif_runtime_resume(struct device *dev)
{
struct rkcif_device *cif_dev = dev_get_drvdata(dev);
int ret = 0;
if (atomic_inc_return(&cif_dev->hw_dev->power_cnt) > 1)
return 0;
mutex_lock(&cif_dev->hw_dev->dev_lock);
ret = pm_runtime_get_sync(cif_dev->hw_dev->dev);
mutex_unlock(&cif_dev->hw_dev->dev_lock);
return (ret > 0) ? 0 : ret;
}
static int __maybe_unused __rkcif_clr_unready_dev(void)
{
struct rkcif_device *cif_dev;
mutex_lock(&rkcif_dev_mutex);
list_for_each_entry(cif_dev, &rkcif_device_list, list) {
v4l2_async_notifier_clr_unready_dev(&cif_dev->notifier);
subdev_asyn_register_itf(cif_dev);
}
mutex_unlock(&rkcif_dev_mutex);
return 0;
}
static int rkcif_clr_unready_dev_param_set(const char *val, const struct kernel_param *kp)
{
#ifdef MODULE
__rkcif_clr_unready_dev();
#endif
return 0;
}
module_param_call(clr_unready_dev, rkcif_clr_unready_dev_param_set, NULL, NULL, 0200);
MODULE_PARM_DESC(clr_unready_dev, "clear unready devices");
#ifndef MODULE
static int __init rkcif_clr_unready_dev(void)
{
__rkcif_clr_unready_dev();
return 0;
}
late_initcall(rkcif_clr_unready_dev);
#endif
static const struct dev_pm_ops rkcif_plat_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(rkcif_runtime_suspend, rkcif_runtime_resume, NULL)
};
struct platform_driver rkcif_plat_drv = {
.driver = {
.name = CIF_DRIVER_NAME,
.of_match_table = of_match_ptr(rkcif_plat_of_match),
.pm = &rkcif_plat_pm_ops,
},
.probe = rkcif_plat_probe,
.remove = rkcif_plat_remove,
};
EXPORT_SYMBOL(rkcif_plat_drv);
MODULE_AUTHOR("Rockchip Camera/ISP team");
MODULE_DESCRIPTION("Rockchip CIF platform driver");
MODULE_LICENSE("GPL v2");