2025-05-10 21:58:58 +08:00

6526 lines
181 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Rockchip CIF Driver
*
* Copyright (C) 2018 Rockchip Electronics Co., Ltd.
*/
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/iommu.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-dma-sg.h>
#include <soc/rockchip/rockchip-system-status.h>
#include <dt-bindings/soc/rockchip-system-status.h>
#include "dev.h"
#include "mipi-csi2.h"
#define CIF_REQ_BUFS_MIN 3
#define CIF_MIN_WIDTH 64
#define CIF_MIN_HEIGHT 64
#define CIF_MAX_WIDTH 8192
#define CIF_MAX_HEIGHT 8192
#define OUTPUT_STEP_WISE 8
#define RKCIF_PLANE_Y 0
#define RKCIF_PLANE_CBCR 1
#define STREAM_PAD_SINK 0
#define STREAM_PAD_SOURCE 1
#define CIF_TIMEOUT_FRAME_NUM (2)
#define CIF_DVP_PCLK_DUAL_EDGE (V4L2_MBUS_PCLK_SAMPLE_RISING |\
V4L2_MBUS_PCLK_SAMPLE_FALLING)
/*
* Round up height when allocate memory so that Rockchip encoder can
* use DMA buffer directly, though this may waste a bit of memory.
*/
#define MEMORY_ALIGN_ROUND_UP_HEIGHT 16
/* Get xsubs and ysubs for fourcc formats
*
* @xsubs: horizontal color samples in a 4*4 matrix, for yuv
* @ysubs: vertical color samples in a 4*4 matrix, for yuv
*/
static int fcc_xysubs(u32 fcc, u32 *xsubs, u32 *ysubs)
{
switch (fcc) {
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
*xsubs = 2;
*ysubs = 1;
break;
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV12:
*xsubs = 2;
*ysubs = 2;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct cif_output_fmt out_fmts[] = {
{
.fourcc = V4L2_PIX_FMT_NV16,
.cplanes = 2,
.mplanes = 1,
.fmt_val = YUV_OUTPUT_422 | UV_STORAGE_ORDER_UVUV,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.fmt_val = YUV_OUTPUT_422 | UV_STORAGE_ORDER_VUVU,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.fmt_val = YUV_OUTPUT_420 | UV_STORAGE_ORDER_UVUV,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_YUV420SP,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_NV21,
.fmt_val = YUV_OUTPUT_420 | UV_STORAGE_ORDER_VUVU,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_YUV420SP,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.cplanes = 2,
.mplanes = 1,
.bpp = { 8, 16 },
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_YUV,
}, {
.fourcc = V4L2_PIX_FMT_RGB24,
.cplanes = 1,
.mplanes = 1,
.bpp = { 24 },
.csi_fmt_val = CSI_WRDDR_TYPE_RGB888,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_RGB565,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_BGR666,
.cplanes = 1,
.mplanes = 1,
.bpp = { 18 },
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.cplanes = 1,
.mplanes = 1,
.bpp = { 8 },
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.cplanes = 1,
.mplanes = 1,
.bpp = { 8 },
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.cplanes = 1,
.mplanes = 1,
.bpp = { 8 },
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.cplanes = 1,
.mplanes = 1,
.bpp = { 8 },
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR16,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 16,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_Y16,
.cplanes = 1,
.mplanes = 1,
.bpp = { 16 },
.raw_bpp = 16,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4L2_PIX_FMT_GREY,
.cplanes = 1,
.mplanes = 1,
.bpp = {8},
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4l2_PIX_FMT_EBD8,
.cplanes = 1,
.mplanes = 1,
.bpp = {8},
.raw_bpp = 8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}, {
.fourcc = V4l2_PIX_FMT_SPD16,
.cplanes = 1,
.mplanes = 1,
.bpp = {16},
.raw_bpp = 16,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
}
/* TODO: We can support NV12M/NV21M/NV16M/NV61M too */
};
static const struct cif_input_fmt in_fmts[] = {
{
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_YUYV,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_YUYV,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_YUYV,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_YUYV,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_INTERLACED,
}, {
.mbus_code = MEDIA_BUS_FMT_YVYU8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_YVYU,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_YVYU,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_YVYU8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_YVYU,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_YVYU,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_INTERLACED,
}, {
.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_UYVY,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_UYVY,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_UYVY,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_UYVY,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_INTERLACED,
}, {
.mbus_code = MEDIA_BUS_FMT_VYUY8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_VYUY,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_VYUY,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_VYUY8_2X8,
.dvp_fmt_val = YUV_INPUT_422 | YUV_INPUT_ORDER_VYUY,
.csi_fmt_val = CSI_WRDDR_TYPE_YUV422,
.csi_yuv_order = CSI_YUV_INPUT_ORDER_VYUY,
.fmt_type = CIF_FMT_TYPE_YUV,
.field = V4L2_FIELD_INTERLACED,
}, {
.mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGBRG10_1X10,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGRBG10_1X10,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SBGGR12_1X12,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGBRG12_1X12,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SGRBG12_1X12,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SRGGB12_1X12,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_RGB888_1X24,
.csi_fmt_val = CSI_WRDDR_TYPE_RGB888,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_Y8_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_Y10_1X10,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_10,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW10,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_Y12_1X12,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_EBD_1X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_8,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW8,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}, {
.mbus_code = MEDIA_BUS_FMT_SPD_2X8,
.dvp_fmt_val = INPUT_MODE_RAW | RAW_DATA_WIDTH_12,
.csi_fmt_val = CSI_WRDDR_TYPE_RAW12,
.fmt_type = CIF_FMT_TYPE_RAW,
.field = V4L2_FIELD_NONE,
}
};
static struct v4l2_subdev *get_remote_sensor(struct rkcif_stream *stream, u16 *index)
{
struct media_pad *local, *remote;
struct media_entity *sensor_me;
struct v4l2_subdev *sub = NULL;
local = &stream->vnode.vdev.entity.pads[0];
if (!local) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: video pad[0] is null\n", __func__);
return NULL;
}
remote = media_entity_remote_pad(local);
if (!remote) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: remote pad is null\n", __func__);
return NULL;
}
if (index)
*index = remote->index;
sensor_me = remote->entity;
sub = media_entity_to_v4l2_subdev(sensor_me);
return sub;
}
static void get_remote_terminal_sensor(struct rkcif_stream *stream,
struct v4l2_subdev **sensor_sd)
{
struct media_graph graph;
struct media_entity *entity = &stream->vnode.vdev.entity;
struct media_device *mdev = entity->graph_obj.mdev;
int ret;
/* Walk the graph to locate sensor nodes. */
mutex_lock(&mdev->graph_mutex);
ret = media_graph_walk_init(&graph, mdev);
if (ret) {
mutex_unlock(&mdev->graph_mutex);
*sensor_sd = NULL;
return;
}
media_graph_walk_start(&graph, entity);
while ((entity = media_graph_walk_next(&graph))) {
if (entity->function == MEDIA_ENT_F_CAM_SENSOR)
break;
}
mutex_unlock(&mdev->graph_mutex);
media_graph_walk_cleanup(&graph);
if (entity)
*sensor_sd = media_entity_to_v4l2_subdev(entity);
else
*sensor_sd = NULL;
}
static struct rkcif_sensor_info *sd_to_sensor(struct rkcif_device *dev,
struct v4l2_subdev *sd)
{
u32 i;
for (i = 0; i < dev->num_sensors; ++i)
if (dev->sensors[i].sd == sd)
return &dev->sensors[i];
if (i == dev->num_sensors) {
for (i = 0; i < dev->num_sensors; ++i) {
if (dev->sensors[i].mbus.type == V4L2_MBUS_CCP2)
return &dev->lvds_subdev.sensor_self;
}
}
return NULL;
}
static unsigned char get_data_type(u32 pixelformat, u8 cmd_mode_en, u8 dsi_input)
{
switch (pixelformat) {
/* csi raw8 */
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
case MEDIA_BUS_FMT_Y8_1X8:
return 0x2a;
/* csi raw10 */
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_Y10_1X10:
return 0x2b;
/* csi raw12 */
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
case MEDIA_BUS_FMT_Y12_1X12:
return 0x2c;
/* csi uyvy 422 */
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_VYUY8_2X8:
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_YVYU8_2X8:
return 0x1e;
case MEDIA_BUS_FMT_RGB888_1X24: {
if (dsi_input) {
if (cmd_mode_en) /* dsi command mode*/
return 0x39;
else /* dsi video mode */
return 0x3e;
} else {
return 0x24;
}
}
case MEDIA_BUS_FMT_EBD_1X8:
return 0x12;
case MEDIA_BUS_FMT_SPD_2X8:
return 0x2f;
default:
return 0x2b;
}
}
static int get_csi_crop_align(const struct cif_input_fmt *fmt_in)
{
switch (fmt_in->csi_fmt_val) {
case CSI_WRDDR_TYPE_RGB888:
return 24;
case CSI_WRDDR_TYPE_RAW10:
case CSI_WRDDR_TYPE_RAW12:
return 4;
case CSI_WRDDR_TYPE_RAW8:
case CSI_WRDDR_TYPE_YUV422:
return 8;
default:
return -1;
}
}
static const struct
cif_input_fmt *get_input_fmt(struct v4l2_subdev *sd, struct v4l2_rect *rect,
u32 pad, int *vc)
{
struct v4l2_subdev_format fmt;
int ret;
u32 i;
struct rkmodule_vc_fmt_info vc_info = {0};
ret = v4l2_subdev_call(sd,
core, ioctl,
RKMODULE_GET_VC_FMT_INFO,
&vc_info);
if (ret < 0)
v4l2_warn(sd->v4l2_dev,
"get sensor vc info failed, maybe not support\n");
fmt.pad = pad;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.reserved[0] = 0;
ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &fmt);
if (ret < 0) {
v4l2_warn(sd->v4l2_dev,
"sensor fmt invalid, set to default size\n");
goto set_default;
}
/* v4l2_subdev_format reserved[0]
* using as mipi virtual channel
*/
switch (fmt.reserved[0]) {
case V4L2_MBUS_CSI2_CHANNEL_3:
*vc = 3;
break;
case V4L2_MBUS_CSI2_CHANNEL_2:
*vc = 2;
break;
case V4L2_MBUS_CSI2_CHANNEL_1:
*vc = 1;
break;
case V4L2_MBUS_CSI2_CHANNEL_0:
*vc = 0;
break;
default:
*vc = -1;
}
v4l2_dbg(1, rkcif_debug, sd->v4l2_dev,
"remote fmt: mbus code:0x%x, size:%dx%d, field: %d\n",
fmt.format.code, fmt.format.width,
fmt.format.height, fmt.format.field);
rect->left = 0;
rect->top = 0;
rect->width = fmt.format.width;
rect->height = fmt.format.height;
for (i = 0; i < ARRAY_SIZE(in_fmts); i++)
if (fmt.format.code == in_fmts[i].mbus_code &&
fmt.format.field == in_fmts[i].field)
return &in_fmts[i];
v4l2_err(sd->v4l2_dev, "remote sensor mbus code not supported\n");
set_default:
rect->left = 0;
rect->top = 0;
rect->width = RKCIF_DEFAULT_WIDTH;
rect->height = RKCIF_DEFAULT_HEIGHT;
return NULL;
}
static const struct
cif_output_fmt *find_output_fmt(struct rkcif_stream *stream, u32 pixelfmt)
{
const struct cif_output_fmt *fmt;
u32 i;
for (i = 0; i < ARRAY_SIZE(out_fmts); i++) {
fmt = &out_fmts[i];
if (fmt->fourcc == pixelfmt)
return fmt;
}
return NULL;
}
static enum cif_reg_index get_reg_index_of_id_ctrl0(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_ID0_CTRL0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_ID1_CTRL0;
break;
case 2:
index = CIF_REG_MIPI_LVDS_ID2_CTRL0;
break;
case 3:
index = CIF_REG_MIPI_LVDS_ID3_CTRL0;
break;
default:
index = CIF_REG_MIPI_LVDS_ID0_CTRL0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_id_ctrl1(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_ID0_CTRL1;
break;
case 1:
index = CIF_REG_MIPI_LVDS_ID1_CTRL1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_ID2_CTRL1;
break;
case 3:
index = CIF_REG_MIPI_LVDS_ID3_CTRL1;
break;
default:
index = CIF_REG_MIPI_LVDS_ID0_CTRL1;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm0_y_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_Y_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_Y_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_Y_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_Y_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_Y_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm1_y_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_Y_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_Y_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_Y_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_Y_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_Y_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm0_uv_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_UV_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_UV_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_UV_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_UV_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME0_ADDR_UV_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm1_uv_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_UV_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_UV_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_UV_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_UV_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME1_ADDR_UV_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm0_y_vlw(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_Y_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_Y_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_Y_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_Y_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_Y_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm1_y_vlw(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_Y_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_Y_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_Y_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_Y_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_Y_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm0_uv_vlw(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_UV_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_UV_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_UV_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_UV_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME0_VLW_UV_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_frm1_uv_vlw(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_UV_ID0;
break;
case 1:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_UV_ID1;
break;
case 2:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_UV_ID2;
break;
case 3:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_UV_ID3;
break;
default:
index = CIF_REG_MIPI_LVDS_FRAME1_VLW_UV_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_id_crop_start(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_MIPI_LVDS_ID0_CROP_START;
break;
case 1:
index = CIF_REG_MIPI_LVDS_ID1_CROP_START;
break;
case 2:
index = CIF_REG_MIPI_LVDS_ID2_CROP_START;
break;
case 3:
index = CIF_REG_MIPI_LVDS_ID3_CROP_START;
break;
default:
index = CIF_REG_MIPI_LVDS_ID0_CROP_START;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_lvds_sav_eav_act0(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_LVDS_SAV_EAV_ACT0_ID0;
break;
case 1:
index = CIF_REG_LVDS_SAV_EAV_ACT0_ID1;
break;
case 2:
index = CIF_REG_LVDS_SAV_EAV_ACT0_ID2;
break;
case 3:
index = CIF_REG_LVDS_SAV_EAV_ACT0_ID3;
break;
default:
index = CIF_REG_LVDS_SAV_EAV_ACT0_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_lvds_sav_eav_act1(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_LVDS_SAV_EAV_ACT1_ID0;
break;
case 1:
index = CIF_REG_LVDS_SAV_EAV_ACT1_ID1;
break;
case 2:
index = CIF_REG_LVDS_SAV_EAV_ACT1_ID2;
break;
case 3:
index = CIF_REG_LVDS_SAV_EAV_ACT1_ID3;
break;
default:
index = CIF_REG_LVDS_SAV_EAV_ACT1_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_lvds_sav_eav_blk0(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_LVDS_SAV_EAV_BLK0_ID0;
break;
case 1:
index = CIF_REG_LVDS_SAV_EAV_BLK0_ID1;
break;
case 2:
index = CIF_REG_LVDS_SAV_EAV_BLK0_ID2;
break;
case 3:
index = CIF_REG_LVDS_SAV_EAV_BLK0_ID3;
break;
default:
index = CIF_REG_LVDS_SAV_EAV_BLK0_ID0;
break;
}
return index;
}
static enum cif_reg_index get_reg_index_of_lvds_sav_eav_blk1(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_LVDS_SAV_EAV_BLK1_ID0;
break;
case 1:
index = CIF_REG_LVDS_SAV_EAV_BLK1_ID1;
break;
case 2:
index = CIF_REG_LVDS_SAV_EAV_BLK1_ID2;
break;
case 3:
index = CIF_REG_LVDS_SAV_EAV_BLK1_ID3;
break;
default:
index = CIF_REG_LVDS_SAV_EAV_BLK1_ID0;
break;
}
return index;
}
static enum cif_reg_index get_dvp_reg_index_of_frm0_y_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_DVP_FRM0_ADDR_Y;
break;
case 1:
index = CIF_REG_DVP_FRM0_ADDR_Y_ID1;
break;
case 2:
index = CIF_REG_DVP_FRM0_ADDR_Y_ID2;
break;
case 3:
index = CIF_REG_DVP_FRM0_ADDR_Y_ID3;
break;
default:
index = CIF_REG_DVP_FRM0_ADDR_Y;
break;
}
return index;
}
static enum cif_reg_index get_dvp_reg_index_of_frm1_y_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_DVP_FRM1_ADDR_Y;
break;
case 1:
index = CIF_REG_DVP_FRM1_ADDR_Y_ID1;
break;
case 2:
index = CIF_REG_DVP_FRM1_ADDR_Y_ID2;
break;
case 3:
index = CIF_REG_DVP_FRM1_ADDR_Y_ID3;
break;
default:
index = CIF_REG_DVP_FRM0_ADDR_Y;
break;
}
return index;
}
static enum cif_reg_index get_dvp_reg_index_of_frm0_uv_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_DVP_FRM0_ADDR_UV;
break;
case 1:
index = CIF_REG_DVP_FRM0_ADDR_UV_ID1;
break;
case 2:
index = CIF_REG_DVP_FRM0_ADDR_UV_ID2;
break;
case 3:
index = CIF_REG_DVP_FRM0_ADDR_UV_ID3;
break;
default:
index = CIF_REG_DVP_FRM0_ADDR_UV;
break;
}
return index;
}
static enum cif_reg_index get_dvp_reg_index_of_frm1_uv_addr(int channel_id)
{
enum cif_reg_index index;
switch (channel_id) {
case 0:
index = CIF_REG_DVP_FRM1_ADDR_UV;
break;
case 1:
index = CIF_REG_DVP_FRM1_ADDR_UV_ID1;
break;
case 2:
index = CIF_REG_DVP_FRM1_ADDR_UV_ID2;
break;
case 3:
index = CIF_REG_DVP_FRM1_ADDR_UV_ID3;
break;
default:
index = CIF_REG_DVP_FRM1_ADDR_UV;
break;
}
return index;
}
/***************************** stream operations ******************************/
static int rkcif_assign_new_buffer_oneframe(struct rkcif_stream *stream,
enum rkcif_yuvaddr_state stat)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct rkcif_buffer *buffer = NULL;
u32 frm_addr_y = CIF_REG_DVP_FRM0_ADDR_Y;
u32 frm_addr_uv = CIF_REG_DVP_FRM0_ADDR_UV;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&stream->vbq_lock, flags);
if (stat == RKCIF_YUV_ADDR_STATE_INIT) {
if (!stream->curr_buf) {
if (!list_empty(&stream->buf_head)) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer,
queue);
list_del(&stream->curr_buf->queue);
}
}
if (stream->curr_buf) {
rkcif_write_register(dev, CIF_REG_DVP_FRM0_ADDR_Y,
stream->curr_buf->buff_addr[RKCIF_PLANE_Y]);
rkcif_write_register(dev, CIF_REG_DVP_FRM0_ADDR_UV,
stream->curr_buf->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, CIF_REG_DVP_FRM0_ADDR_Y,
dummy_buf->dma_addr);
rkcif_write_register(dev, CIF_REG_DVP_FRM0_ADDR_UV,
dummy_buf->dma_addr);
}
}
if (!stream->next_buf) {
if (!list_empty(&stream->buf_head)) {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
list_del(&stream->next_buf->queue);
}
}
if (stream->next_buf) {
rkcif_write_register(dev, CIF_REG_DVP_FRM1_ADDR_Y,
stream->next_buf->buff_addr[RKCIF_PLANE_Y]);
rkcif_write_register(dev, CIF_REG_DVP_FRM1_ADDR_UV,
stream->next_buf->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, CIF_REG_DVP_FRM1_ADDR_Y,
dummy_buf->dma_addr);
rkcif_write_register(dev, CIF_REG_DVP_FRM1_ADDR_UV,
dummy_buf->dma_addr);
}
}
} else if (stat == RKCIF_YUV_ADDR_STATE_UPDATE) {
if (!list_empty(&stream->buf_head)) {
if (stream->frame_phase == CIF_CSI_FRAME0_READY) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
list_del(&stream->curr_buf->queue);
buffer = stream->curr_buf;
} else if (stream->frame_phase == CIF_CSI_FRAME1_READY) {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
list_del(&stream->next_buf->queue);
buffer = stream->next_buf;
}
} else {
if (dummy_buf->vaddr && stream->frame_phase == CIF_CSI_FRAME0_READY)
stream->curr_buf = NULL;
if (dummy_buf->vaddr && stream->frame_phase == CIF_CSI_FRAME1_READY)
stream->next_buf = NULL;
buffer = NULL;
}
if (stream->frame_phase == CIF_CSI_FRAME0_READY) {
frm_addr_y = CIF_REG_DVP_FRM0_ADDR_Y;
frm_addr_uv = CIF_REG_DVP_FRM0_ADDR_UV;
} else if (stream->frame_phase == CIF_CSI_FRAME1_READY) {
frm_addr_y = CIF_REG_DVP_FRM1_ADDR_Y;
frm_addr_uv = CIF_REG_DVP_FRM1_ADDR_UV;
}
if (buffer) {
rkcif_write_register(dev, frm_addr_y,
buffer->buff_addr[RKCIF_PLANE_Y]);
rkcif_write_register(dev, frm_addr_uv,
buffer->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, frm_addr_y,
dummy_buf->dma_addr);
rkcif_write_register(dev, frm_addr_uv,
dummy_buf->dma_addr);
} else {
ret = -EINVAL;
}
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"not active buffer, frame Drop\n");
}
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
return ret;
}
static void rkcif_assign_new_buffer_init(struct rkcif_stream *stream,
int channel_id)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_mbus_config *mbus_cfg = &dev->active_sensor->mbus;
u32 frm0_addr_y, frm0_addr_uv;
u32 frm1_addr_y, frm1_addr_uv;
unsigned long flags;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct csi_channel_info *channel = &dev->channels[channel_id];
if (mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) {
frm0_addr_y = get_reg_index_of_frm0_y_addr(channel_id);
frm0_addr_uv = get_reg_index_of_frm0_uv_addr(channel_id);
frm1_addr_y = get_reg_index_of_frm1_y_addr(channel_id);
frm1_addr_uv = get_reg_index_of_frm1_uv_addr(channel_id);
} else {
frm0_addr_y = get_dvp_reg_index_of_frm0_y_addr(channel_id);
frm0_addr_uv = get_dvp_reg_index_of_frm0_uv_addr(channel_id);
frm1_addr_y = get_dvp_reg_index_of_frm1_y_addr(channel_id);
frm1_addr_uv = get_dvp_reg_index_of_frm1_uv_addr(channel_id);
}
spin_lock_irqsave(&stream->vbq_lock, flags);
if (!stream->curr_buf) {
if (!list_empty(&stream->buf_head)) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer,
queue);
list_del(&stream->curr_buf->queue);
}
}
if (stream->curr_buf) {
rkcif_write_register(dev, frm0_addr_y,
stream->curr_buf->buff_addr[RKCIF_PLANE_Y]);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm0_addr_uv,
stream->curr_buf->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, frm0_addr_y, dummy_buf->dma_addr);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm0_addr_uv, dummy_buf->dma_addr);
}
}
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
stream->next_buf = stream->curr_buf;
if (stream->next_buf) {
rkcif_write_register(dev, frm1_addr_y,
stream->next_buf->buff_addr[RKCIF_PLANE_Y] + (channel->virtual_width / 2));
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm1_addr_uv,
stream->next_buf->buff_addr[RKCIF_PLANE_CBCR] + (channel->virtual_width / 2));
}
} else {
if (!stream->next_buf) {
if (!list_empty(&stream->buf_head)) {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
list_del(&stream->next_buf->queue);
}
}
if (stream->next_buf) {
rkcif_write_register(dev, frm1_addr_y,
stream->next_buf->buff_addr[RKCIF_PLANE_Y]);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm1_addr_uv,
stream->next_buf->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, frm1_addr_y, dummy_buf->dma_addr);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm1_addr_uv, dummy_buf->dma_addr);
}
}
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
stream->is_dvp_yuv_addr_init = true;
/* for BT.656/BT.1120 multi channels function,
* yuv addr of unused channel must be set
*/
if (mbus_cfg->type == V4L2_MBUS_BT656) {
int ch_id;
for (ch_id = 0; ch_id < RKCIF_MAX_STREAM_DVP; ch_id++) {
if (dev->stream[ch_id].is_dvp_yuv_addr_init)
continue;
if (dummy_buf->dma_addr) {
rkcif_write_register(dev,
get_dvp_reg_index_of_frm0_y_addr(ch_id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm0_uv_addr(ch_id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm1_y_addr(ch_id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm1_uv_addr(ch_id),
dummy_buf->dma_addr);
}
}
}
}
static int rkcif_assign_new_buffer_update(struct rkcif_stream *stream,
int channel_id)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct v4l2_mbus_config *mbus_cfg = &dev->active_sensor->mbus;
struct rkcif_buffer *buffer = NULL;
u32 frm_addr_y, frm_addr_uv;
struct csi_channel_info *channel = &dev->channels[channel_id];
int ret = 0;
unsigned long flags;
if (mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) {
frm_addr_y = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_y_addr(channel_id) :
get_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_uv_addr(channel_id) :
get_reg_index_of_frm1_uv_addr(channel_id);
} else {
frm_addr_y = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_y_addr(channel_id) :
get_dvp_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_uv_addr(channel_id) :
get_dvp_reg_index_of_frm1_uv_addr(channel_id);
}
spin_lock_irqsave(&stream->vbq_lock, flags);
if (!list_empty(&stream->buf_head)) {
if (!dummy_buf->vaddr &&
stream->curr_buf == stream->next_buf &&
stream->cif_fmt_in->field != V4L2_FIELD_INTERLACED)
ret = -EINVAL;
if (stream->frame_phase == CIF_CSI_FRAME0_READY) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->curr_buf) {
list_del(&stream->curr_buf->queue);
buffer = stream->curr_buf;
}
} else if (stream->frame_phase == CIF_CSI_FRAME1_READY) {
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
if (stream->next_buf != stream->curr_buf) {
stream->next_buf = stream->curr_buf;
buffer = stream->next_buf;
} else {
buffer = NULL;
}
} else {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->next_buf) {
list_del(&stream->next_buf->queue);
buffer = stream->next_buf;
}
}
}
} else {
buffer = NULL;
if (dummy_buf->vaddr) {
if (stream->frame_phase == CIF_CSI_FRAME0_READY) {
stream->curr_buf = NULL;
} else if (stream->frame_phase == CIF_CSI_FRAME1_READY) {
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
stream->next_buf = stream->curr_buf;
buffer = stream->next_buf;
} else {
stream->next_buf = NULL;
}
}
} else if (stream->curr_buf != stream->next_buf) {
if (stream->frame_phase == CIF_CSI_FRAME0_READY) {
stream->curr_buf = stream->next_buf;
buffer = stream->next_buf;
} else if (stream->frame_phase == CIF_CSI_FRAME1_READY) {
stream->next_buf = stream->curr_buf;
buffer = stream->curr_buf;
}
}
}
stream->frame_phase_cache = stream->frame_phase;
spin_unlock_irqrestore(&stream->vbq_lock, flags);
if (buffer) {
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED &&
stream->frame_phase == CIF_CSI_FRAME1_READY) {
rkcif_write_register(dev, frm_addr_y,
buffer->buff_addr[RKCIF_PLANE_Y] + (channel->virtual_width / 2));
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv,
buffer->buff_addr[RKCIF_PLANE_CBCR] + (channel->virtual_width / 2));
} else {
rkcif_write_register(dev, frm_addr_y,
buffer->buff_addr[RKCIF_PLANE_Y]);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv,
buffer->buff_addr[RKCIF_PLANE_CBCR]);
}
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, frm_addr_y, dummy_buf->dma_addr);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv, dummy_buf->dma_addr);
} else {
ret = -EINVAL;
}
v4l2_info(&dev->v4l2_dev,
"not active buffer, skip current frame, %s stream[%d]\n",
(mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) ? "mipi/lvds" : "dvp",
stream->id);
}
return ret;
}
static int rkcif_get_new_buffer_wake_up_mode(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&stream->vbq_lock, flags);
if (!list_empty(&stream->buf_head)) {
if (!dummy_buf->vaddr &&
stream->curr_buf == stream->next_buf)
ret = -EINVAL;
if (stream->line_int_cnt % 2) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->curr_buf)
list_del(&stream->curr_buf->queue);
} else {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->next_buf)
list_del(&stream->next_buf->queue);
}
stream->is_buf_active = true;
} else {
stream->is_buf_active = false;
if (dummy_buf->vaddr) {
if (stream->line_int_cnt % 2)
stream->curr_buf = NULL;
else
stream->next_buf = NULL;
} else if (stream->curr_buf != stream->next_buf) {
if (stream->line_int_cnt % 2) {
stream->curr_buf = stream->next_buf;
stream->frame_phase_cache = CIF_CSI_FRAME0_READY;
} else {
stream->next_buf = stream->curr_buf;
stream->frame_phase_cache = CIF_CSI_FRAME1_READY;
}
stream->is_buf_active = true;
} else {
ret = -EINVAL;
}
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
return ret;
}
static int rkcif_update_new_buffer_wake_up_mode(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct v4l2_mbus_config *mbus_cfg = &dev->active_sensor->mbus;
struct rkcif_buffer *buffer = NULL;
u32 frm_addr_y, frm_addr_uv;
int channel_id = stream->id;
int ret = 0;
unsigned long flags;
if (mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) {
frm_addr_y = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_y_addr(channel_id) :
get_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_uv_addr(channel_id) :
get_reg_index_of_frm1_uv_addr(channel_id);
} else {
frm_addr_y = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_y_addr(channel_id) :
get_dvp_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_uv_addr(channel_id) :
get_dvp_reg_index_of_frm1_uv_addr(channel_id);
}
spin_lock_irqsave(&stream->vbq_lock, flags);
if (stream->is_buf_active) {
if (stream->frame_phase == CIF_CSI_FRAME0_READY)
buffer = stream->curr_buf;
else if (stream->frame_phase == CIF_CSI_FRAME1_READY)
buffer = stream->next_buf;
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
if (buffer) {
rkcif_write_register(dev, frm_addr_y,
buffer->buff_addr[RKCIF_PLANE_Y]);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv,
buffer->buff_addr[RKCIF_PLANE_CBCR]);
} else {
if (dummy_buf->vaddr) {
rkcif_write_register(dev, frm_addr_y, dummy_buf->dma_addr);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv, dummy_buf->dma_addr);
} else {
ret = -EINVAL;
}
v4l2_info(&dev->v4l2_dev,
"not active buffer, skip current frame, %s stream[%d]\n",
(mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) ? "mipi/lvds" : "dvp",
stream->id);
}
return ret;
}
static void rkcif_assign_dummy_buffer(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_mbus_config *mbus_cfg = &dev->active_sensor->mbus;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
unsigned long flags;
spin_lock_irqsave(&stream->vbq_lock, flags);
/* for BT.656/BT.1120 multi channels function,
* yuv addr of unused channel must be set
*/
if (mbus_cfg->type == V4L2_MBUS_BT656 && dummy_buf->vaddr) {
rkcif_write_register(dev,
get_dvp_reg_index_of_frm0_y_addr(stream->id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm0_uv_addr(stream->id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm1_y_addr(stream->id),
dummy_buf->dma_addr);
rkcif_write_register(dev,
get_dvp_reg_index_of_frm1_uv_addr(stream->id),
dummy_buf->dma_addr);
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
}
static int rkcif_assign_new_buffer_pingpong(struct rkcif_stream *stream,
int init, int channel_id)
{
int ret = 0;
if (init)
rkcif_assign_new_buffer_init(stream, channel_id);
else
ret = rkcif_assign_new_buffer_update(stream, channel_id);
return ret;
}
static void rkcif_csi_get_vc_num(struct rkcif_device *dev,
unsigned int mbus_flags)
{
int i, vc_num = 0;
for (i = 0; i < RKCIF_MAX_CSI_CHANNEL; i++) {
if (mbus_flags & V4L2_MBUS_CSI2_CHANNEL_0) {
dev->channels[vc_num].vc = vc_num;
vc_num++;
mbus_flags ^= V4L2_MBUS_CSI2_CHANNEL_0;
continue;
}
if (mbus_flags & V4L2_MBUS_CSI2_CHANNEL_1) {
dev->channels[vc_num].vc = vc_num;
vc_num++;
mbus_flags ^= V4L2_MBUS_CSI2_CHANNEL_1;
continue;
}
if (mbus_flags & V4L2_MBUS_CSI2_CHANNEL_2) {
dev->channels[vc_num].vc = vc_num;
vc_num++;
mbus_flags ^= V4L2_MBUS_CSI2_CHANNEL_2;
continue;
}
if (mbus_flags & V4L2_MBUS_CSI2_CHANNEL_3) {
dev->channels[vc_num].vc = vc_num;
vc_num++;
mbus_flags ^= V4L2_MBUS_CSI2_CHANNEL_3;
continue;
}
}
dev->num_channels = vc_num ? vc_num : 1;
if (dev->num_channels == 1)
dev->channels[0].vc = 0;
}
static void rkcif_csi_set_lvds_sav_eav(struct rkcif_stream *stream,
struct csi_channel_info *channel)
{
struct rkcif_device *dev = stream->cifdev;
struct rkmodule_lvds_cfg *lvds_cfg = &channel->lvds_cfg;
struct rkmodule_lvds_frame_sync_code *frm_sync_code = NULL;
struct rkmodule_lvds_frm_sync_code *odd_sync_code = NULL;
struct rkmodule_lvds_frm_sync_code *even_sync_code = NULL;
if (dev->hdr.mode == NO_HDR) {
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_LINEAR];
odd_sync_code = &frm_sync_code->odd_sync_code;
even_sync_code = odd_sync_code;
} else {
if (channel->id == RKCIF_STREAM_MIPI_ID0)
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_LONG];
if (dev->hdr.mode == HDR_X2) {
if (channel->id == RKCIF_STREAM_MIPI_ID1)
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_SHORT];
else
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_LONG];
} else if (dev->hdr.mode == HDR_X3) {
if (channel->id == RKCIF_STREAM_MIPI_ID1)
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_MEDIUM];
else if (channel->id == RKCIF_STREAM_MIPI_ID2)
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_SHORT];
else
frm_sync_code = &lvds_cfg->frm_sync_code[LVDS_CODE_GRP_LONG];
}
odd_sync_code = &frm_sync_code->odd_sync_code;
even_sync_code = &frm_sync_code->even_sync_code;
}
if (odd_sync_code && even_sync_code) {
rkcif_write_register(stream->cifdev,
get_reg_index_of_lvds_sav_eav_act0(channel->id),
SW_LVDS_EAV_ACT(odd_sync_code->act.eav) |
SW_LVDS_SAV_ACT(odd_sync_code->act.sav));
rkcif_write_register(stream->cifdev,
get_reg_index_of_lvds_sav_eav_blk0(channel->id),
SW_LVDS_EAV_BLK(odd_sync_code->blk.eav) |
SW_LVDS_SAV_BLK(odd_sync_code->blk.sav));
rkcif_write_register(stream->cifdev,
get_reg_index_of_lvds_sav_eav_act1(channel->id),
SW_LVDS_EAV_ACT(even_sync_code->act.eav) |
SW_LVDS_SAV_ACT(even_sync_code->act.sav));
rkcif_write_register(stream->cifdev,
get_reg_index_of_lvds_sav_eav_blk1(channel->id),
SW_LVDS_EAV_BLK(even_sync_code->blk.eav) |
SW_LVDS_SAV_BLK(even_sync_code->blk.sav));
}
}
static int rkcif_csi_channel_init(struct rkcif_stream *stream,
struct csi_channel_info *channel)
{
struct rkcif_device *dev = stream->cifdev;
const struct cif_output_fmt *fmt;
u32 fourcc;
channel->enable = 1;
channel->width = stream->pixm.width;
channel->height = stream->pixm.height;
channel->fmt_val = stream->cif_fmt_out->csi_fmt_val;
channel->cmd_mode_en = 0; /* default use DSI Video Mode */
channel->dsi_input = dev->terminal_sensor.dsi_input_en;
if (stream->crop_enable) {
channel->crop_en = 1;
if (channel->fmt_val == CSI_WRDDR_TYPE_RGB888)
channel->crop_st_x = 3 * stream->crop[CROP_SRC_ACT].left;
else
channel->crop_st_x = stream->crop[CROP_SRC_ACT].left;
channel->crop_st_y = stream->crop[CROP_SRC_ACT].top;
channel->width = stream->crop[CROP_SRC_ACT].width;
channel->height = stream->crop[CROP_SRC_ACT].height;
} else {
channel->width = stream->pixm.width;
channel->height = stream->pixm.height;
channel->crop_en = 0;
}
fmt = find_output_fmt(stream, stream->pixm.pixelformat);
if (!fmt) {
v4l2_err(&dev->v4l2_dev, "can not find output format: 0x%x",
stream->pixm.pixelformat);
return -EINVAL;
}
/*
* for mipi or lvds, when enable compact, the virtual width of raw10/raw12
* needs aligned with :ALIGN(bits_per_pixel * width / 8, 8), if enable 16bit mode
* needs aligned with :ALIGN(bits_per_pixel * width * 2, 8), to optimize reading and
* writing of ddr, aliged with 256
*/
if (fmt->fmt_type == CIF_FMT_TYPE_RAW && stream->is_compact &&
fmt->csi_fmt_val != CSI_WRDDR_TYPE_RGB888) {
channel->virtual_width = ALIGN(channel->width * fmt->raw_bpp / 8, 256);
} else {
channel->virtual_width = ALIGN(channel->width * fmt->bpp[0] / 8, 8);
}
if (channel->fmt_val == CSI_WRDDR_TYPE_RGB888)
channel->width = channel->width * fmt->bpp[0] / 8;
/*
* rk cif don't support output yuyv fmt data
* if user request yuyv fmt, the input mode must be RAW8
* and the width is double Because the real input fmt is
* yuyv
*/
fourcc = stream->cif_fmt_out->fourcc;
if (fourcc == V4L2_PIX_FMT_YUYV || fourcc == V4L2_PIX_FMT_YVYU ||
fourcc == V4L2_PIX_FMT_UYVY || fourcc == V4L2_PIX_FMT_VYUY) {
channel->fmt_val = CSI_WRDDR_TYPE_RAW8;
channel->width *= 2;
channel->virtual_width *= 2;
}
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
channel->virtual_width *= 2;
channel->height /= 2;
}
channel->data_type = get_data_type(stream->cif_fmt_in->mbus_code,
channel->cmd_mode_en, channel->dsi_input);
if ((dev->hdr.mode == NO_HDR && stream->vc >= 0) ||
(dev->hdr.mode == HDR_X2 && stream->vc > 1) ||
(dev->hdr.mode == HDR_X3 && stream->vc > 2))
channel->vc = stream->vc;
else
channel->vc = channel->id;
v4l2_dbg(3, rkcif_debug, &dev->v4l2_dev,
"%s: channel width %d, height %d, virtual_width %d, vc %d\n", __func__,
channel->width, channel->height, channel->virtual_width, channel->vc);
return 0;
}
static int rkcif_csi_channel_set(struct rkcif_stream *stream,
struct csi_channel_info *channel,
enum v4l2_mbus_type mbus_type)
{
unsigned int val = 0x0;
struct rkcif_device *dev = stream->cifdev;
struct rkcif_stream *detect_stream = &dev->stream[0];
unsigned int wait_line = 0x3fff;
if (channel->id >= 4)
return -EINVAL;
if (!channel->enable) {
rkcif_write_register(dev, get_reg_index_of_id_ctrl0(channel->id),
CSI_DISABLE_CAPTURE);
return 0;
}
rkcif_write_register_and(dev, CIF_REG_MIPI_LVDS_INTSTAT,
~(CSI_START_INTSTAT(channel->id) |
CSI_DMA_END_INTSTAT(channel->id) |
CSI_LINE_INTSTAT(channel->id)));
/* enable id0 frame start int for sof(long frame, for hdr) */
if (channel->id == RKCIF_STREAM_MIPI_ID0)
rkcif_write_register_or(dev, CIF_REG_MIPI_LVDS_INTEN,
CSI_START_INTEN(channel->id));
if (detect_stream->is_line_wake_up) {
rkcif_write_register_or(dev, CIF_REG_MIPI_LVDS_INTEN,
CSI_LINE_INTEN(channel->id));
wait_line = dev->wait_line;
}
rkcif_write_register(dev, CIF_REG_MIPI_LVDS_LINE_INT_NUM_ID0_1,
wait_line << 16 | wait_line);
rkcif_write_register(dev, CIF_REG_MIPI_LVDS_LINE_INT_NUM_ID2_3,
wait_line << 16 | wait_line);
rkcif_write_register_or(dev, CIF_REG_MIPI_LVDS_INTEN,
CSI_DMA_END_INTEN(channel->id));
rkcif_write_register(dev, CIF_REG_MIPI_WATER_LINE,
CIF_MIPI_LVDS_SW_WATER_LINE_25_RK1808 |
CIF_MIPI_LVDS_SW_WATER_LINE_ENABLE_RK1808 |
CIF_MIPI_LVDS_SW_HURRY_VALUE_RK1808(0x3) |
CIF_MIPI_LVDS_SW_HURRY_ENABLE_RK1808);
val = CIF_MIPI_LVDS_SW_PRESS_VALUE(0x7) |
CIF_MIPI_LVDS_SW_PRESS_ENABLE |
CIF_MIPI_LVDS_SW_HURRY_VALUE(0x7) |
CIF_MIPI_LVDS_SW_HURRY_ENABLE |
CIF_MIPI_LVDS_SW_WATER_LINE_25 |
CIF_MIPI_LVDS_SW_WATER_LINE_ENABLE;
if (mbus_type == V4L2_MBUS_CSI2) {
val &= ~CIF_MIPI_LVDS_SW_SEL_LVDS;
} else if (mbus_type == V4L2_MBUS_CCP2) {
if (channel->fmt_val == CSI_WRDDR_TYPE_RAW12)
val |= CIF_MIPI_LVDS_SW_LVDS_WIDTH_12BITS;
else if (channel->fmt_val == CSI_WRDDR_TYPE_RAW10)
val |= CIF_MIPI_LVDS_SW_LVDS_WIDTH_10BITS;
else
val |= CIF_MIPI_LVDS_SW_LVDS_WIDTH_8BITS;
val |= CIF_MIPI_LVDS_SW_SEL_LVDS;
}
rkcif_write_register(dev, CIF_REG_MIPI_LVDS_CTRL, val);
rkcif_write_register_or(dev, CIF_REG_MIPI_LVDS_INTEN,
CSI_ALL_ERROR_INTEN);
rkcif_write_register(dev, get_reg_index_of_id_ctrl1(channel->id),
channel->width | (channel->height << 16));
rkcif_write_register(dev, get_reg_index_of_frm0_y_vlw(channel->id),
channel->virtual_width);
rkcif_write_register(dev, get_reg_index_of_frm1_y_vlw(channel->id),
channel->virtual_width);
rkcif_write_register(dev, get_reg_index_of_frm0_uv_vlw(channel->id),
channel->virtual_width);
rkcif_write_register(dev, get_reg_index_of_frm1_uv_vlw(channel->id),
channel->virtual_width);
if (channel->crop_en)
rkcif_write_register(dev, get_reg_index_of_id_crop_start(channel->id),
channel->crop_st_y << 16 | channel->crop_st_x);
/* Set up an buffer for the next frame */
rkcif_assign_new_buffer_pingpong(stream,
RKCIF_YUV_ADDR_STATE_INIT,
channel->id);
if (mbus_type == V4L2_MBUS_CSI2) {
//need always enable crop
val = CSI_ENABLE_CAPTURE | channel->fmt_val |
channel->cmd_mode_en << 4 | CSI_ENABLE_CROP |
channel->vc << 8 | channel->data_type << 10;
if (stream->is_compact)
val |= CSI_ENABLE_MIPI_COMPACT;
else
val &= ~CSI_ENABLE_MIPI_COMPACT;
if (stream->cifdev->chip_id >= CHIP_RK3568_CIF)
val |= stream->cif_fmt_in->csi_yuv_order;
} else if (mbus_type == V4L2_MBUS_CCP2) {
rkcif_csi_set_lvds_sav_eav(stream, channel);
val = LVDS_ENABLE_CAPTURE | LVDS_MODE(channel->lvds_cfg.mode) |
LVDS_MAIN_LANE(0) | LVDS_FID(0) |
LVDS_LANES_ENABLED(dev->active_sensor->lanes);
if (stream->is_compact)
val |= LVDS_COMPACT;
else
val &= ~LVDS_COMPACT;
}
if (stream->is_high_align)
val |= CSI_ENABLE_MIPI_HIGH_ALIGN;
else
val &= ~CSI_ENABLE_MIPI_HIGH_ALIGN;
rkcif_write_register(dev, get_reg_index_of_id_ctrl0(channel->id), val);
return 0;
}
static int rkcif_csi_stream_start(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *active_sensor = dev->active_sensor;
unsigned int flags = active_sensor->mbus.flags;
enum v4l2_mbus_type mbus_type = active_sensor->mbus.type;
struct csi_channel_info *channel;
u32 ret = 0;
if (stream->state != RKCIF_STATE_RESET_IN_STREAMING)
stream->frame_idx = 0;
if (mbus_type == V4L2_MBUS_CSI2) {
rkcif_csi_get_vc_num(dev, flags);
channel = &dev->channels[stream->id];
channel->id = stream->id;
rkcif_csi_channel_init(stream, channel);
rkcif_csi_channel_set(stream, channel, V4L2_MBUS_CSI2);
} else if (mbus_type == V4L2_MBUS_CCP2) {
rkcif_csi_get_vc_num(dev, flags);
channel = &dev->channels[stream->id];
channel->id = stream->id;
ret = v4l2_subdev_call(dev->terminal_sensor.sd, core,
ioctl, RKMODULE_GET_LVDS_CFG,
&channel->lvds_cfg);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Err: get lvds config failed!!\n");
return ret;
}
rkcif_csi_channel_init(stream, channel);
rkcif_csi_channel_set(stream, channel, V4L2_MBUS_CCP2);
}
stream->line_int_cnt = 0;
if (stream->is_line_wake_up)
stream->is_can_stop = false;
else
stream->is_can_stop = true;
stream->state = RKCIF_STATE_STREAMING;
dev->workmode = RKCIF_WORKMODE_PINGPONG;
return 0;
}
static void rkcif_stream_stop(struct rkcif_stream *stream)
{
struct rkcif_device *cif_dev = stream->cifdev;
struct v4l2_mbus_config *mbus_cfg = &cif_dev->active_sensor->mbus;
u32 val;
int id;
if (mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) {
id = stream->id;
val = rkcif_read_register(cif_dev, get_reg_index_of_id_ctrl0(id));
if (mbus_cfg->type == V4L2_MBUS_CSI2)
val &= ~CSI_ENABLE_CAPTURE;
else
val &= ~LVDS_ENABLE_CAPTURE;
rkcif_write_register(cif_dev, get_reg_index_of_id_ctrl0(id), val);
rkcif_write_register_or(cif_dev, CIF_REG_MIPI_LVDS_INTSTAT,
CSI_START_INTSTAT(id) |
CSI_DMA_END_INTSTAT(id) |
CSI_LINE_INTSTAT(id));
rkcif_write_register_and(cif_dev, CIF_REG_MIPI_LVDS_INTEN,
~(CSI_START_INTEN(id) |
CSI_DMA_END_INTEN(id) |
CSI_LINE_INTEN(id)));
rkcif_write_register_and(cif_dev, CIF_REG_MIPI_LVDS_INTEN,
~CSI_ALL_ERROR_INTEN);
} else {
if (atomic_read(&cif_dev->pipe.stream_cnt) == 1) {
val = rkcif_read_register(cif_dev, CIF_REG_DVP_CTRL);
rkcif_write_register(cif_dev, CIF_REG_DVP_CTRL,
val & (~ENABLE_CAPTURE));
rkcif_write_register(cif_dev, CIF_REG_DVP_INTEN, 0x0);
rkcif_write_register(cif_dev, CIF_REG_DVP_INTSTAT, 0x3ff);
rkcif_write_register(cif_dev, CIF_REG_DVP_FRAME_STATUS, 0x0);
}
stream->is_dvp_yuv_addr_init = false;
}
stream->state = RKCIF_STATE_READY;
}
static bool rkcif_is_extending_line_for_height(struct rkcif_device *dev,
struct rkcif_stream *stream,
const struct cif_input_fmt *fmt)
{
bool is_extended = false;
struct rkmodule_hdr_cfg hdr_cfg;
int ret;
if (dev->chip_id == CHIP_RV1126_CIF ||
dev->chip_id == CHIP_RV1126_CIF_LITE) {
if (dev->terminal_sensor.sd) {
ret = v4l2_subdev_call(dev->terminal_sensor.sd,
core, ioctl,
RKMODULE_GET_HDR_CFG,
&hdr_cfg);
if (!ret)
dev->hdr.mode = hdr_cfg.hdr_mode;
else
dev->hdr.mode = NO_HDR;
}
if (fmt && fmt->fmt_type == CIF_FMT_TYPE_RAW) {
if ((dev->hdr.mode == HDR_X2 &&
stream->id == RKCIF_STREAM_MIPI_ID1) ||
(dev->hdr.mode == HDR_X3 &&
stream->id == RKCIF_STREAM_MIPI_ID2) ||
(dev->hdr.mode == NO_HDR)) {
is_extended = true;
}
}
}
return is_extended;
}
static int rkcif_queue_setup(struct vb2_queue *queue,
unsigned int *num_buffers,
unsigned int *num_planes,
unsigned int sizes[],
struct device *alloc_ctxs[])
{
struct rkcif_stream *stream = queue->drv_priv;
struct rkcif_extend_info *extend_line = &stream->extend_line;
struct rkcif_device *dev = stream->cifdev;
const struct v4l2_pix_format_mplane *pixm = NULL;
const struct cif_output_fmt *cif_fmt;
const struct cif_input_fmt *in_fmt;
bool is_extended = false;
u32 i, height;
pixm = &stream->pixm;
cif_fmt = stream->cif_fmt_out;
in_fmt = stream->cif_fmt_in;
*num_planes = cif_fmt->mplanes;
if (stream->crop_enable)
height = stream->crop[CROP_SRC_ACT].height;
else
height = pixm->height;
is_extended = rkcif_is_extending_line_for_height(dev, stream, in_fmt);
if (is_extended && extend_line->is_extended) {
height = extend_line->pixm.height;
pixm = &extend_line->pixm;
}
for (i = 0; i < cif_fmt->mplanes; i++) {
const struct v4l2_plane_pix_format *plane_fmt;
int h = round_up(height, MEMORY_ALIGN_ROUND_UP_HEIGHT);
plane_fmt = &pixm->plane_fmt[i];
sizes[i] = plane_fmt->sizeimage / height * h;
}
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "%s count %d, size %d, extended(%d, %d)\n",
v4l2_type_names[queue->type], *num_buffers, sizes[0],
is_extended, extend_line->is_extended);
return 0;
}
static void rkcif_check_buffer_update_pingpong(struct rkcif_stream *stream,
int channel_id)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_mbus_config *mbus_cfg = &dev->active_sensor->mbus;
struct rkcif_buffer *buffer = NULL;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
u32 frm_addr_y, frm_addr_uv;
unsigned long flags;
if (stream->state == RKCIF_STATE_STREAMING &&
stream->curr_buf == stream->next_buf &&
stream->cif_fmt_in->field != V4L2_FIELD_INTERLACED &&
(!dummy_buf->vaddr)) {
if (!stream->is_line_wake_up) {
if (mbus_cfg->type == V4L2_MBUS_CSI2 ||
mbus_cfg->type == V4L2_MBUS_CCP2) {
frm_addr_y = stream->frame_phase_cache & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_y_addr(channel_id) :
get_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase_cache & CIF_CSI_FRAME0_READY ?
get_reg_index_of_frm0_uv_addr(channel_id) :
get_reg_index_of_frm1_uv_addr(channel_id);
} else {
frm_addr_y = stream->frame_phase_cache & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_y_addr(channel_id) :
get_dvp_reg_index_of_frm1_y_addr(channel_id);
frm_addr_uv = stream->frame_phase_cache & CIF_CSI_FRAME0_READY ?
get_dvp_reg_index_of_frm0_uv_addr(channel_id) :
get_dvp_reg_index_of_frm1_uv_addr(channel_id);
}
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"stream[%d] update buf in %s, stream->frame_phase_cache %d\n",
stream->id, __func__, stream->frame_phase_cache);
spin_lock_irqsave(&stream->vbq_lock, flags);
if (!list_empty(&stream->buf_head)) {
if (stream->frame_phase_cache == CIF_CSI_FRAME0_READY) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->curr_buf) {
list_del(&stream->curr_buf->queue);
buffer = stream->curr_buf;
}
} else if (stream->frame_phase_cache == CIF_CSI_FRAME1_READY) {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->next_buf) {
list_del(&stream->next_buf->queue);
buffer = stream->next_buf;
}
}
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
if (buffer) {
rkcif_write_register(dev, frm_addr_y,
buffer->buff_addr[RKCIF_PLANE_Y]);
if (stream->cif_fmt_out->fmt_type != CIF_FMT_TYPE_RAW)
rkcif_write_register(dev, frm_addr_uv,
buffer->buff_addr[RKCIF_PLANE_CBCR]);
}
} else {
spin_lock_irqsave(&stream->vbq_lock, flags);
if (stream->curr_buf == stream->next_buf) {
if (stream->frame_phase_cache == CIF_CSI_FRAME0_READY) {
stream->curr_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->curr_buf)
list_del(&stream->curr_buf->queue);
} else if (stream->frame_phase_cache == CIF_CSI_FRAME1_READY) {
stream->next_buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
if (stream->next_buf)
list_del(&stream->next_buf->queue);
}
stream->is_buf_active = true;
}
spin_unlock_irqrestore(&stream->vbq_lock, flags);
}
}
}
/*
* The vb2_buffer are stored in rkcif_buffer, in order to unify
* mplane buffer and none-mplane buffer.
*/
static void rkcif_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct rkcif_buffer *cifbuf = to_rkcif_buffer(vbuf);
struct vb2_queue *queue = vb->vb2_queue;
struct rkcif_stream *stream = queue->drv_priv;
struct v4l2_pix_format_mplane *pixm = &stream->pixm;
const struct cif_output_fmt *fmt = stream->cif_fmt_out;
struct rkcif_hw *hw_dev = stream->cifdev->hw_dev;
unsigned long flags;
int i;
memset(cifbuf->buff_addr, 0, sizeof(cifbuf->buff_addr));
/* If mplanes > 1, every c-plane has its own m-plane,
* otherwise, multiple c-planes are in the same m-plane
*/
for (i = 0; i < fmt->mplanes; i++) {
void *addr = vb2_plane_vaddr(vb, i);
if (hw_dev->iommu_en) {
struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, i);
cifbuf->buff_addr[i] = sg_dma_address(sgt->sgl);
} else {
cifbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
}
if (rkcif_debug && addr && !hw_dev->iommu_en) {
memset(addr, 0, pixm->plane_fmt[i].sizeimage);
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"Clear buffer, size: 0x%08x\n",
pixm->plane_fmt[i].sizeimage);
}
}
if (fmt->mplanes == 1) {
for (i = 0; i < fmt->cplanes - 1; i++)
cifbuf->buff_addr[i + 1] = cifbuf->buff_addr[i] +
pixm->plane_fmt[i].bytesperline * pixm->height;
}
spin_lock_irqsave(&stream->vbq_lock, flags);
list_add_tail(&cifbuf->queue, &stream->buf_head);
spin_unlock_irqrestore(&stream->vbq_lock, flags);
if (stream->cifdev->workmode == RKCIF_WORKMODE_PINGPONG)
rkcif_check_buffer_update_pingpong(stream, stream->id);
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"stream[%d] buf queue, index: %d\n",
stream->id, vb->index);
}
static int rkcif_create_dummy_buf(struct rkcif_stream *stream)
{
u32 fourcc;
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct rkcif_hw *hw_dev = dev->hw_dev;
/* get a maximum plane size */
dummy_buf->size = max3(stream->pixm.plane_fmt[0].bytesperline *
stream->pixm.height,
stream->pixm.plane_fmt[1].sizeimage,
stream->pixm.plane_fmt[2].sizeimage);
/*
* rk cif don't support output yuyv fmt data
* if user request yuyv fmt, the input mode must be RAW8
* and the width is double Because the real input fmt is
* yuyv
*/
fourcc = stream->cif_fmt_out->fourcc;
if (fourcc == V4L2_PIX_FMT_YUYV || fourcc == V4L2_PIX_FMT_YVYU ||
fourcc == V4L2_PIX_FMT_UYVY || fourcc == V4L2_PIX_FMT_VYUY)
dummy_buf->size *= 2;
dummy_buf->vaddr = dma_alloc_coherent(hw_dev->dev, dummy_buf->size,
&dummy_buf->dma_addr,
GFP_KERNEL);
if (!dummy_buf->vaddr) {
v4l2_err(&dev->v4l2_dev,
"Failed to allocate the memory for dummy buffer\n");
return -ENOMEM;
}
v4l2_info(&dev->v4l2_dev, "Allocate dummy buffer, size: 0x%08x\n",
dummy_buf->size);
return 0;
}
static void rkcif_destroy_dummy_buf(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_dummy_buffer *dummy_buf = &dev->dummy_buf;
struct rkcif_hw *hw_dev = dev->hw_dev;
if (dummy_buf->vaddr)
dma_free_coherent(hw_dev->dev, dummy_buf->size,
dummy_buf->vaddr, dummy_buf->dma_addr);
dummy_buf->dma_addr = 0;
dummy_buf->vaddr = NULL;
}
static void rkcif_do_cru_reset(struct rkcif_device *dev)
{
struct rkcif_hw *cif_hw = dev->hw_dev;
unsigned int val, i;
if (dev->luma_vdev.enable)
rkcif_stop_luma(&dev->luma_vdev);
if (dev->hdr.mode != NO_HDR) {
if (dev->chip_id == CHIP_RK1808_CIF) {
val = rkcif_read_register(dev, CIF_REG_MIPI_WATER_LINE);
val |= CIF_MIPI_LVDS_SW_DMA_IDLE_RK1808;
rkcif_write_register(dev, CIF_REG_MIPI_WATER_LINE, val);
} else {
val = rkcif_read_register(dev, CIF_REG_MIPI_LVDS_CTRL);
val |= CIF_MIPI_LVDS_SW_DMA_IDLE;
rkcif_write_register(dev, CIF_REG_MIPI_LVDS_CTRL, val);
}
udelay(5);
}
for (i = 0; i < ARRAY_SIZE(cif_hw->cif_rst); i++)
if (cif_hw->cif_rst[i])
reset_control_assert(cif_hw->cif_rst[i]);
udelay(10);
for (i = 0; i < ARRAY_SIZE(cif_hw->cif_rst); i++)
if (cif_hw->cif_rst[i])
reset_control_deassert(cif_hw->cif_rst[i]);
if (cif_hw->iommu_en) {
struct iommu_domain *domain;
domain = iommu_get_domain_for_dev(cif_hw->dev);
if (domain) {
iommu_detach_device(domain, cif_hw->dev);
iommu_attach_device(domain, cif_hw->dev);
}
}
}
static void rkcif_release_rdbk_buf(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_buffer *rdbk_buf;
struct rkcif_buffer *tmp_buf;
unsigned long flags;
bool has_added;
int index = 0;
if (stream->id == RKCIF_STREAM_MIPI_ID0)
index = RDBK_L;
else if (stream->id == RKCIF_STREAM_MIPI_ID1)
index = RDBK_M;
else if (stream->id == RKCIF_STREAM_MIPI_ID2)
index = RDBK_S;
else
return;
spin_lock_irqsave(&dev->hdr_lock, flags);
rdbk_buf = dev->rdbk_buf[index];
if (rdbk_buf) {
if (rdbk_buf != stream->curr_buf &&
rdbk_buf != stream->next_buf) {
has_added = false;
list_for_each_entry(tmp_buf, &stream->buf_head, queue) {
if (tmp_buf == rdbk_buf) {
has_added = true;
break;
}
}
if (!has_added)
list_add_tail(&rdbk_buf->queue, &stream->buf_head);
}
dev->rdbk_buf[index] = NULL;
}
spin_unlock_irqrestore(&dev->hdr_lock, flags);
}
static void rkcif_stop_streaming(struct vb2_queue *queue)
{
struct rkcif_stream *stream = queue->drv_priv;
struct rkcif_vdev_node *node = &stream->vnode;
struct rkcif_device *dev = stream->cifdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct rkcif_buffer *buf = NULL;
int ret;
struct rkcif_hw *hw_dev = dev->hw_dev;
bool can_reset = true;
int i;
unsigned long flags;
mutex_lock(&dev->hw_dev->dev_lock);
v4l2_info(&dev->v4l2_dev, "stream[%d] start stopping\n", stream->id);
stream->stopping = true;
ret = wait_event_timeout(stream->wq_stopped,
stream->state != RKCIF_STATE_STREAMING,
msecs_to_jiffies(1000));
if (!ret) {
rkcif_stream_stop(stream);
stream->stopping = false;
}
media_pipeline_stop(&node->vdev.entity);
ret = dev->pipe.set_stream(&dev->pipe, false);
if (ret < 0)
v4l2_err(v4l2_dev, "pipeline stream-off failed error:%d\n",
ret);
dev->is_start_hdr = false;
stream->is_dvp_yuv_addr_init = false;
/* release buffers */
if (stream->curr_buf)
list_add_tail(&stream->curr_buf->queue, &stream->buf_head);
if (stream->next_buf &&
stream->next_buf != stream->curr_buf)
list_add_tail(&stream->next_buf->queue, &stream->buf_head);
if (dev->hdr.mode != NO_HDR)
rkcif_release_rdbk_buf(stream);
stream->curr_buf = NULL;
stream->next_buf = NULL;
while (!list_empty(&stream->buf_head)) {
buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
list_del(&buf->queue);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
ret = dev->pipe.close(&dev->pipe);
if (ret < 0)
v4l2_err(v4l2_dev, "pipeline close failed error:%d\n", ret);
if (dev->hdr.mode == HDR_X2) {
if (dev->stream[RKCIF_STREAM_MIPI_ID0].state == RKCIF_STATE_READY &&
dev->stream[RKCIF_STREAM_MIPI_ID1].state == RKCIF_STATE_READY) {
dev->can_be_reset = true;
}
} else if (dev->hdr.mode == HDR_X3) {
if (dev->stream[RKCIF_STREAM_MIPI_ID0].state == RKCIF_STATE_READY &&
dev->stream[RKCIF_STREAM_MIPI_ID1].state == RKCIF_STATE_READY &&
dev->stream[RKCIF_STREAM_MIPI_ID2].state == RKCIF_STATE_READY) {
dev->can_be_reset = true;
}
} else {
dev->can_be_reset = true;
}
spin_lock_irqsave(&hw_dev->hw_timer.timer_lock, flags);
for (i = 0; i < hw_dev->dev_num; i++) {
if (atomic_read(&hw_dev->cif_dev[i]->pipe.stream_cnt) != 0) {
can_reset = false;
break;
}
}
if (dev->can_be_reset && can_reset) {
rkcif_do_cru_reset(dev);
dev->can_be_reset = false;
hw_dev->reset_work_cancel = true;
hw_dev->hw_timer.is_running = false;
hw_dev->reset_info.is_need_reset = 0;
}
spin_unlock_irqrestore(&hw_dev->hw_timer.timer_lock, flags);
if (!atomic_read(&dev->pipe.stream_cnt) && dev->dummy_buf.vaddr)
rkcif_destroy_dummy_buf(stream);
v4l2_info(&dev->v4l2_dev, "stream[%d] stopping finished\n", stream->id);
mutex_unlock(&dev->hw_dev->dev_lock);
}
/*
* CIF supports the following input modes,
* YUV, the default mode
* PAL,
* NTSC,
* RAW, if the input format is raw bayer
* JPEG, TODO
* MIPI, TODO
*/
static u32 rkcif_determine_input_mode(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *sensor_info = dev->active_sensor;
struct rkcif_sensor_info *terminal_sensor = &dev->terminal_sensor;
__u32 intf = BT656_STD_RAW;
u32 mode = INPUT_MODE_YUV;
v4l2_std_id std;
int ret;
ret = v4l2_subdev_call(sensor_info->sd, video, querystd, &std);
if (ret == 0) {
/* retrieve std from sensor if exist */
switch (std) {
case V4L2_STD_NTSC:
mode = INPUT_MODE_NTSC;
break;
case V4L2_STD_PAL:
mode = INPUT_MODE_PAL;
break;
case V4L2_STD_ATSC:
mode = INPUT_MODE_BT1120;
break;
default:
v4l2_err(&dev->v4l2_dev,
"std: %lld is not supported", std);
}
} else {
/* determine input mode by mbus_code (fmt_type) */
switch (stream->cif_fmt_in->fmt_type) {
case CIF_FMT_TYPE_YUV:
if (dev->chip_id >= CHIP_RK3568_CIF) {
if (sensor_info->mbus.type == V4L2_MBUS_BT656)
mode = INPUT_MODE_BT656_YUV422;
else
mode = INPUT_MODE_YUV;
} else {
mode = INPUT_MODE_YUV;
}
break;
case CIF_FMT_TYPE_RAW:
if (dev->chip_id >= CHIP_RK3568_CIF) {
ret = v4l2_subdev_call(terminal_sensor->sd,
core, ioctl,
RKMODULE_GET_BT656_INTF_TYPE,
&intf);
if (!ret) {
if (intf == BT656_SONY_RAW)
mode = INPUT_MODE_SONY_RAW;
else
mode = INPUT_MODE_RAW;
} else {
mode = INPUT_MODE_RAW;
}
} else {
mode = INPUT_MODE_RAW;
}
break;
}
}
return mode;
}
static inline u32 rkcif_scl_ctl(struct rkcif_stream *stream)
{
u32 fmt_type = stream->cif_fmt_in->fmt_type;
return (fmt_type == CIF_FMT_TYPE_YUV) ?
ENABLE_YUV_16BIT_BYPASS : ENABLE_RAW_16BIT_BYPASS;
}
/**
* rkcif_align_bits_per_pixel() - return the bit width of per pixel for stored
* In raw or jpeg mode, data is stored by 16-bits,so need to align it.
*/
static u32 rkcif_align_bits_per_pixel(struct rkcif_stream *stream,
const struct cif_output_fmt *fmt,
int plane_index)
{
u32 bpp = 0, i, cal = 0;
if (fmt) {
switch (fmt->fourcc) {
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
case V4L2_PIX_FMT_GREY:
case V4L2_PIX_FMT_Y16:
bpp = fmt->bpp[plane_index];
break;
case V4L2_PIX_FMT_RGB24:
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_BGR666:
case V4L2_PIX_FMT_SRGGB8:
case V4L2_PIX_FMT_SGRBG8:
case V4L2_PIX_FMT_SGBRG8:
case V4L2_PIX_FMT_SBGGR8:
case V4L2_PIX_FMT_SRGGB10:
case V4L2_PIX_FMT_SGRBG10:
case V4L2_PIX_FMT_SGBRG10:
case V4L2_PIX_FMT_SBGGR10:
case V4L2_PIX_FMT_SRGGB12:
case V4L2_PIX_FMT_SGRBG12:
case V4L2_PIX_FMT_SGBRG12:
case V4L2_PIX_FMT_SBGGR12:
case V4L2_PIX_FMT_SBGGR16:
case V4l2_PIX_FMT_SPD16:
case V4l2_PIX_FMT_EBD8:
if (stream->cifdev->chip_id < CHIP_RV1126_CIF) {
bpp = max(fmt->bpp[plane_index], (u8)CIF_RAW_STORED_BIT_WIDTH);
cal = CIF_RAW_STORED_BIT_WIDTH;
} else {
bpp = max(fmt->bpp[plane_index], (u8)CIF_RAW_STORED_BIT_WIDTH_RV1126);
cal = CIF_RAW_STORED_BIT_WIDTH_RV1126;
}
for (i = 1; i < 5; i++) {
if (i * cal >= bpp) {
bpp = i * cal;
break;
}
}
break;
default:
pr_err("fourcc: %d is not supported!\n", fmt->fourcc);
break;
}
}
return bpp;
}
/**
* rkcif_cal_raw_vir_line_ratio() - return ratio for virtual line width setting
* In raw or jpeg mode, data is stored by 16-bits,
* so need to align virtual line width.
*/
static u32 rkcif_cal_raw_vir_line_ratio(struct rkcif_stream *stream,
const struct cif_output_fmt *fmt)
{
u32 ratio = 0, bpp = 0;
if (fmt) {
bpp = rkcif_align_bits_per_pixel(stream, fmt, 0);
ratio = bpp / CIF_YUV_STORED_BIT_WIDTH;
}
return ratio;
}
static void rkcif_sync_crop_info(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_subdev_selection input_sel;
int ret;
if (dev->terminal_sensor.sd) {
input_sel.target = V4L2_SEL_TGT_CROP_BOUNDS;
ret = v4l2_subdev_call(dev->terminal_sensor.sd,
pad, get_selection, NULL,
&input_sel);
if (!ret) {
stream->crop[CROP_SRC_SENSOR] = input_sel.r;
stream->crop_enable = true;
stream->crop_mask |= CROP_SRC_SENSOR_MASK;
dev->terminal_sensor.selection = input_sel;
} else {
stream->crop_mask &= ~CROP_SRC_SENSOR_MASK;
dev->terminal_sensor.selection.r = dev->terminal_sensor.raw_rect;
}
}
if ((stream->crop_mask & 0x3) == (CROP_SRC_USR_MASK | CROP_SRC_SENSOR_MASK)) {
if (stream->crop[CROP_SRC_USR].left + stream->crop[CROP_SRC_USR].width >
stream->crop[CROP_SRC_SENSOR].width ||
stream->crop[CROP_SRC_USR].top + stream->crop[CROP_SRC_USR].height >
stream->crop[CROP_SRC_SENSOR].height)
stream->crop[CROP_SRC_USR] = stream->crop[CROP_SRC_SENSOR];
}
if (stream->crop_mask & CROP_SRC_USR_MASK) {
stream->crop[CROP_SRC_ACT] = stream->crop[CROP_SRC_USR];
if (stream->crop_mask & CROP_SRC_SENSOR_MASK) {
stream->crop[CROP_SRC_ACT].left = stream->crop[CROP_SRC_USR].left +
stream->crop[CROP_SRC_SENSOR].left;
stream->crop[CROP_SRC_ACT].top = stream->crop[CROP_SRC_USR].top +
stream->crop[CROP_SRC_SENSOR].top;
}
} else if (stream->crop_mask & CROP_SRC_SENSOR_MASK) {
stream->crop[CROP_SRC_ACT] = stream->crop[CROP_SRC_SENSOR];
} else {
stream->crop[CROP_SRC_ACT] = dev->terminal_sensor.raw_rect;
}
}
/**rkcif_sanity_check_fmt - check fmt for setting
* @stream - the stream for setting
* @s_crop - the crop information
*/
static int rkcif_sanity_check_fmt(struct rkcif_stream *stream,
const struct v4l2_rect *s_crop)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct v4l2_rect input, *crop;
int vc;
if (dev->terminal_sensor.sd) {
stream->cif_fmt_in = get_input_fmt(dev->terminal_sensor.sd,
&input, stream->id, &vc);
if (!stream->cif_fmt_in) {
v4l2_err(v4l2_dev, "Input fmt is invalid\n");
return -EINVAL;
}
} else {
v4l2_err(v4l2_dev, "terminal_sensor is invalid\n");
return -EINVAL;
}
stream->vc = vc;
if (stream->cif_fmt_in->mbus_code == MEDIA_BUS_FMT_EBD_1X8 ||
stream->cif_fmt_in->mbus_code == MEDIA_BUS_FMT_SPD_2X8) {
stream->crop_enable = false;
return 0;
}
if (s_crop)
crop = (struct v4l2_rect *)s_crop;
else
crop = &stream->crop[CROP_SRC_ACT];
if (crop->width + crop->left > input.width ||
crop->height + crop->top > input.height) {
v4l2_err(v4l2_dev, "crop size is bigger than input\n");
return -EINVAL;
}
if (dev->active_sensor->mbus.type == V4L2_MBUS_CSI2) {
if (crop->left > 0) {
int align_x = get_csi_crop_align(stream->cif_fmt_in);
if (align_x > 0 && crop->left % align_x != 0) {
v4l2_err(v4l2_dev,
"ERROR: crop left must align %d\n",
align_x);
return -EINVAL;
}
}
} else if (dev->active_sensor->mbus.type == V4L2_MBUS_CCP2) {
if (crop->left % 4 != 0 && crop->width % 4 != 0) {
v4l2_err(v4l2_dev,
"ERROR: lvds crop left and width must align %d\n", 4);
return -EINVAL;
}
}
return 0;
}
int rkcif_update_sensor_info(struct rkcif_stream *stream)
{
struct rkcif_sensor_info *sensor, *terminal_sensor;
struct v4l2_subdev *sensor_sd;
int ret = 0;
sensor_sd = get_remote_sensor(stream, NULL);
if (!sensor_sd) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: stream[%d] get remote sensor_sd failed!\n",
__func__, stream->id);
return -ENODEV;
}
sensor = sd_to_sensor(stream->cifdev, sensor_sd);
if (!sensor) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: stream[%d] get remote sensor failed!\n",
__func__, stream->id);
return -ENODEV;
}
ret = v4l2_subdev_call(sensor->sd, video, g_mbus_config,
&sensor->mbus);
if (ret && ret != -ENOIOCTLCMD) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: get remote %s mbus failed!\n", __func__, sensor->sd->name);
return ret;
}
stream->cifdev->active_sensor = sensor;
terminal_sensor = &stream->cifdev->terminal_sensor;
get_remote_terminal_sensor(stream, &terminal_sensor->sd);
if (terminal_sensor->sd) {
ret = v4l2_subdev_call(terminal_sensor->sd, video, g_mbus_config,
&terminal_sensor->mbus);
if (ret && ret != -ENOIOCTLCMD) {
v4l2_err(&stream->cifdev->v4l2_dev,
"%s: get terminal %s mbus failed!\n",
__func__, terminal_sensor->sd->name);
return ret;
}
if (v4l2_subdev_call(terminal_sensor->sd, core, ioctl, RKMODULE_GET_CSI_DSI_INFO,
&terminal_sensor->dsi_input_en)) {
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"%s: get terminal %s CSI/DSI sel failed, default csi input!\n",
__func__, terminal_sensor->sd->name);
terminal_sensor->dsi_input_en = 0;
}
}
if (terminal_sensor->mbus.type == V4L2_MBUS_CSI2 ||
terminal_sensor->mbus.type == V4L2_MBUS_CCP2) {
switch (terminal_sensor->mbus.flags & V4L2_MBUS_CSI2_LANES) {
case V4L2_MBUS_CSI2_1_LANE:
terminal_sensor->lanes = 1;
break;
case V4L2_MBUS_CSI2_2_LANE:
terminal_sensor->lanes = 2;
break;
case V4L2_MBUS_CSI2_3_LANE:
terminal_sensor->lanes = 3;
break;
case V4L2_MBUS_CSI2_4_LANE:
terminal_sensor->lanes = 4;
break;
default:
v4l2_err(&stream->cifdev->v4l2_dev, "%s:get sd:%s lane num failed!\n",
__func__,
terminal_sensor->sd ?
terminal_sensor->sd->name : "null");
return -EINVAL;
}
}
return ret;
}
static int rkcif_stream_start(struct rkcif_stream *stream)
{
u32 val, mbus_flags, href_pol, vsync_pol,
xfer_mode = 0, yc_swap = 0, inputmode = 0,
mipimode = 0, workmode = 0, multi_id = 0,
multi_id_en = BT656_1120_MULTI_ID_DISABLE,
multi_id_mode = BT656_1120_MULTI_ID_MODE_1,
multi_id_sel = BT656_1120_MULTI_ID_SEL_LSB,
bt1120_edge_mode = BT1120_CLOCK_SINGLE_EDGES,
bt1120_flags = 0;
struct rkmodule_bt656_mbus_info bt1120_info;
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *sensor_info;
struct v4l2_mbus_config *mbus;
struct rkcif_dvp_sof_subdev *sof_sd = &dev->dvp_sof_subdev;
const struct cif_output_fmt *fmt;
if (stream->state != RKCIF_STATE_RESET_IN_STREAMING)
stream->frame_idx = 0;
sensor_info = dev->active_sensor;
mbus = &sensor_info->mbus;
if (sensor_info->sd && mbus->type == V4L2_MBUS_BT656) {
int ret;
multi_id_en = BT656_1120_MULTI_ID_ENABLE;
ret = v4l2_subdev_call(sensor_info->sd,
core, ioctl,
RKMODULE_GET_BT656_MBUS_INFO,
&bt1120_info);
if (ret) {
v4l2_warn(&dev->v4l2_dev,
"waring: no muti channel info for BT.656\n");
} else {
bt1120_flags = bt1120_info.flags;
if (bt1120_flags & RKMODULE_CAMERA_BT656_PARSE_ID_LSB)
multi_id_sel = BT656_1120_MULTI_ID_SEL_LSB;
else
multi_id_sel = BT656_1120_MULTI_ID_SEL_MSB;
if (((bt1120_flags & RKMODULE_CAMERA_BT656_CHANNELS) >> 2) > 3)
multi_id_mode = BT656_1120_MULTI_ID_MODE_4;
else if (((bt1120_flags & RKMODULE_CAMERA_BT656_CHANNELS) >> 2) > 1)
multi_id_mode = BT656_1120_MULTI_ID_MODE_2;
multi_id = DVP_SW_MULTI_ID(stream->id, stream->id, bt1120_info.id_en_bits);
rkcif_write_register_or(dev, CIF_REG_DVP_MULTI_ID, multi_id);
}
}
mbus_flags = mbus->flags;
if ((mbus_flags & CIF_DVP_PCLK_DUAL_EDGE) == CIF_DVP_PCLK_DUAL_EDGE) {
bt1120_edge_mode = BT1120_CLOCK_DOUBLE_EDGES;
rkcif_enable_dvp_clk_dual_edge(dev, true);
} else {
bt1120_edge_mode = BT1120_CLOCK_SINGLE_EDGES;
rkcif_enable_dvp_clk_dual_edge(dev, false);
}
if (mbus_flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
rkcif_config_dvp_clk_sampling_edge(dev, RKCIF_CLK_RISING);
else
rkcif_config_dvp_clk_sampling_edge(dev, RKCIF_CLK_FALLING);
href_pol = (mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) ?
HSY_HIGH_ACTIVE : HSY_LOW_ACTIVE;
vsync_pol = (mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) ?
VSY_HIGH_ACTIVE : VSY_LOW_ACTIVE;
inputmode = rkcif_determine_input_mode(stream);
if (dev->chip_id <= CHIP_RK1808_CIF) {
if (inputmode == INPUT_MODE_BT1120) {
if (stream->cif_fmt_in->field == V4L2_FIELD_NONE)
xfer_mode = BT1120_TRANSMIT_PROGRESS;
else
xfer_mode = BT1120_TRANSMIT_INTERFACE;
if (CIF_FETCH_IS_Y_FIRST(stream->cif_fmt_in->dvp_fmt_val))
yc_swap = BT1120_YC_SWAP;
}
} else {
if (sensor_info->mbus.type == V4L2_MBUS_BT656) {
if (stream->cif_fmt_in->field == V4L2_FIELD_NONE)
xfer_mode = BT1120_TRANSMIT_PROGRESS;
else
xfer_mode = BT1120_TRANSMIT_INTERFACE;
}
if (inputmode == INPUT_MODE_BT1120) {
if (CIF_FETCH_IS_Y_FIRST(stream->cif_fmt_in->dvp_fmt_val))
yc_swap = BT1120_YC_SWAP;
}
}
if (dev->active_sensor->mbus.type == V4L2_MBUS_CSI2) {
inputmode = INPUT_MODE_MIPI;
/* if cif is linked with mipi,
* href pol must be set as high active,
* vsyn pol must be set as low active.
*/
href_pol = HSY_HIGH_ACTIVE;
vsync_pol = VSY_LOW_ACTIVE;
if (stream->cif_fmt_in->fmt_type == CIF_FMT_TYPE_YUV)
mipimode = MIPI_MODE_YUV;
else if (stream->cif_fmt_in->fmt_type == CIF_FMT_TYPE_RAW)
mipimode = MIPI_MODE_RGB;
else
mipimode = MIPI_MODE_32BITS_BYPASS;
}
val = vsync_pol | href_pol | inputmode | mipimode
| stream->cif_fmt_out->fmt_val
| stream->cif_fmt_in->dvp_fmt_val
| xfer_mode | yc_swap | multi_id_en
| multi_id_sel | multi_id_mode | bt1120_edge_mode;
if (stream->is_high_align)
val |= CIF_HIGH_ALIGN;
else
val &= ~CIF_HIGH_ALIGN;
rkcif_write_register(dev, CIF_REG_DVP_FOR, val);
val = stream->pixm.width;
if (stream->cif_fmt_in->fmt_type == CIF_FMT_TYPE_RAW) {
fmt = find_output_fmt(stream, stream->pixm.pixelformat);
if (fmt->fourcc == V4L2_PIX_FMT_GREY ||
fmt->fourcc == V4L2_PIX_FMT_SRGGB8 ||
fmt->fourcc == V4L2_PIX_FMT_SGRBG8 ||
fmt->fourcc == V4L2_PIX_FMT_SGBRG8 ||
fmt->fourcc == V4L2_PIX_FMT_SBGGR8)
val = ALIGN(stream->pixm.width * fmt->raw_bpp / 8, 256);
else
val = stream->pixm.width * rkcif_cal_raw_vir_line_ratio(stream, fmt);
}
rkcif_write_register(dev, CIF_REG_DVP_VIR_LINE_WIDTH, val);
rkcif_write_register(dev, CIF_REG_DVP_SET_SIZE,
stream->pixm.width | (stream->pixm.height << 16));
if (stream->crop_enable) {
dev->channels[stream->id].crop_en = 1;
dev->channels[stream->id].crop_st_x = stream->crop[CROP_SRC_ACT].left;
dev->channels[stream->id].crop_st_y = stream->crop[CROP_SRC_ACT].top;
dev->channels[stream->id].width = stream->crop[CROP_SRC_ACT].width;
dev->channels[stream->id].height = stream->crop[CROP_SRC_ACT].height;
} else {
dev->channels[stream->id].crop_st_y = 0;
dev->channels[stream->id].crop_st_x = 0;
dev->channels[stream->id].width = stream->pixm.width;
dev->channels[stream->id].height = stream->pixm.height;
dev->channels[stream->id].crop_en = 0;
}
rkcif_write_register(dev, CIF_REG_DVP_CROP,
dev->channels[stream->id].crop_st_y << CIF_CROP_Y_SHIFT |
dev->channels[stream->id].crop_st_x);
if (atomic_read(&dev->pipe.stream_cnt) <= 1)
rkcif_write_register(dev, CIF_REG_DVP_FRAME_STATUS, FRAME_STAT_CLS);
rkcif_write_register(dev, CIF_REG_DVP_INTSTAT, INTSTAT_CLS);
rkcif_write_register(dev, CIF_REG_DVP_SCL_CTRL, rkcif_scl_ctl(stream));
if (dev->chip_id < CHIP_RK1808_CIF)
rkcif_assign_new_buffer_oneframe(stream,
RKCIF_YUV_ADDR_STATE_INIT);
else
rkcif_assign_new_buffer_pingpong(stream,
RKCIF_YUV_ADDR_STATE_INIT,
stream->id);
rkcif_write_register_or(dev, CIF_REG_DVP_INTEN,
DVP_DMA_END_INTSTAT(stream->id) |
INTSTAT_ERR | PST_INF_FRAME_END);
/* enable line int for sof */
rkcif_write_register(dev, CIF_REG_DVP_LINE_INT_NUM, 0x1);
rkcif_write_register_or(dev, CIF_REG_DVP_INTEN, LINE_INT_EN);
if (dev->workmode == RKCIF_WORKMODE_ONEFRAME)
workmode = MODE_ONEFRAME;
else if (dev->workmode == RKCIF_WORKMODE_PINGPONG)
workmode = MODE_PINGPONG;
else
workmode = MODE_LINELOOP;
if (inputmode == INPUT_MODE_BT1120) {
workmode = MODE_PINGPONG;
dev->workmode = RKCIF_WORKMODE_PINGPONG;
}
rkcif_write_register(dev, CIF_REG_DVP_CTRL,
AXI_BURST_16 | workmode | ENABLE_CAPTURE);
atomic_set(&sof_sd->frm_sync_seq, 0);
stream->state = RKCIF_STATE_STREAMING;
stream->cifdev->dvp_sof_in_oneframe = 0;
return 0;
}
static int rkcif_start_streaming(struct vb2_queue *queue, unsigned int count)
{
struct rkcif_stream *stream = queue->drv_priv;
struct rkcif_vdev_node *node = &stream->vnode;
struct rkcif_device *dev = stream->cifdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct rkcif_sensor_info *sensor_info = dev->active_sensor;
struct rkcif_sensor_info *terminal_sensor = &dev->terminal_sensor;
struct rkmodule_hdr_cfg hdr_cfg;
int rkmodule_stream_seq = RKMODULE_START_STREAM_DEFAULT;
int ret;
v4l2_info(&dev->v4l2_dev, "stream[%d] start streaming\n", stream->id);
mutex_lock(&dev->hw_dev->dev_lock);
if (WARN_ON(stream->state != RKCIF_STATE_READY)) {
ret = -EBUSY;
v4l2_err(v4l2_dev, "stream in busy state\n");
goto destroy_buf;
}
if (stream->is_line_wake_up)
stream->is_line_inten = true;
else
stream->is_line_inten = false;
stream->fs_cnt_in_single_frame = 0;
if (dev->active_sensor) {
ret = rkcif_update_sensor_info(stream);
if (ret < 0) {
v4l2_err(v4l2_dev,
"update sensor info failed %d\n",
ret);
goto out;
}
}
if (terminal_sensor->sd) {
ret = v4l2_subdev_call(terminal_sensor->sd,
core, ioctl,
RKMODULE_GET_HDR_CFG,
&hdr_cfg);
if (!ret)
dev->hdr.mode = hdr_cfg.hdr_mode;
else
dev->hdr.mode = NO_HDR;
ret = v4l2_subdev_call(terminal_sensor->sd,
video, g_frame_interval, &terminal_sensor->fi);
if (ret)
terminal_sensor->fi.interval = (struct v4l2_fract) {1, 30};
ret = v4l2_subdev_call(terminal_sensor->sd,
core, ioctl,
RKMODULE_GET_START_STREAM_SEQ,
&rkmodule_stream_seq);
if (ret)
rkmodule_stream_seq = RKMODULE_START_STREAM_DEFAULT;
rkcif_sync_crop_info(stream);
}
ret = rkcif_sanity_check_fmt(stream, NULL);
if (ret < 0)
goto destroy_buf;
if (((dev->active_sensor && dev->active_sensor->mbus.type == V4L2_MBUS_BT656) ||
dev->is_use_dummybuf) &&
(!dev->dummy_buf.vaddr)) {
ret = rkcif_create_dummy_buf(stream);
if (ret < 0) {
v4l2_err(v4l2_dev, "Failed to create dummy_buf, %d\n", ret);
goto destroy_buf;
}
}
ret = dev->pipe.open(&dev->pipe, &node->vdev.entity, true);
if (ret < 0) {
v4l2_err(v4l2_dev, "open cif pipeline failed %d\n",
ret);
goto destroy_buf;
}
/*
* start sub-devices
* When use bt601, the sampling edge of cif is random,
* can be rising or fallling after powering on cif.
* To keep the coherence of edge, open sensor in advance.
*/
if (sensor_info->mbus.type == V4L2_MBUS_PARALLEL ||
rkmodule_stream_seq == RKMODULE_START_STREAM_FRONT) {
ret = dev->pipe.set_stream(&dev->pipe, true);
if (ret < 0)
goto runtime_put;
}
if (dev->chip_id >= CHIP_RK1808_CIF) {
if (dev->active_sensor->mbus.type == V4L2_MBUS_CSI2 ||
dev->active_sensor->mbus.type == V4L2_MBUS_CCP2)
ret = rkcif_csi_stream_start(stream);
else
ret = rkcif_stream_start(stream);
} else {
ret = rkcif_stream_start(stream);
}
if (ret < 0)
goto runtime_put;
ret = media_pipeline_start(&node->vdev.entity, &dev->pipe.pipe);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "start pipeline failed %d\n",
ret);
goto pipe_stream_off;
}
if (sensor_info->mbus.type != V4L2_MBUS_PARALLEL &&
rkmodule_stream_seq != RKMODULE_START_STREAM_FRONT) {
ret = dev->pipe.set_stream(&dev->pipe, true);
if (ret < 0)
goto stop_stream;
}
if (dev->hdr.mode == NO_HDR) {
if (dev->stream[RKCIF_STREAM_MIPI_ID0].state == RKCIF_STATE_STREAMING) {
rkcif_start_luma(&dev->luma_vdev,
dev->stream[RKCIF_STREAM_MIPI_ID0].cif_fmt_in);
}
} else if (dev->hdr.mode == HDR_X2) {
if (dev->stream[RKCIF_STREAM_MIPI_ID0].state == RKCIF_STATE_STREAMING &&
dev->stream[RKCIF_STREAM_MIPI_ID1].state == RKCIF_STATE_STREAMING) {
rkcif_start_luma(&dev->luma_vdev,
dev->stream[RKCIF_STREAM_MIPI_ID0].cif_fmt_in);
}
} else if (dev->hdr.mode == HDR_X3) {
if (dev->stream[RKCIF_STREAM_MIPI_ID0].state == RKCIF_STATE_STREAMING &&
dev->stream[RKCIF_STREAM_MIPI_ID1].state == RKCIF_STATE_STREAMING &&
dev->stream[RKCIF_STREAM_MIPI_ID2].state == RKCIF_STATE_STREAMING) {
rkcif_start_luma(&dev->luma_vdev,
dev->stream[RKCIF_STREAM_MIPI_ID0].cif_fmt_in);
}
}
if (dev->hw_dev->reset_work_cancel)
dev->hw_dev->reset_work_cancel = false;
if (dev->hdr.mode == NO_HDR)
stream->streamon_timestamp = ktime_get_ns();
goto out;
stop_stream:
rkcif_stream_stop(stream);
pipe_stream_off:
dev->pipe.set_stream(&dev->pipe, false);
runtime_put:
pm_runtime_put_sync(dev->dev);
destroy_buf:
if (stream->next_buf)
vb2_buffer_done(&stream->next_buf->vb.vb2_buf,
VB2_BUF_STATE_QUEUED);
if (stream->curr_buf)
vb2_buffer_done(&stream->curr_buf->vb.vb2_buf,
VB2_BUF_STATE_QUEUED);
while (!list_empty(&stream->buf_head)) {
struct rkcif_buffer *buf;
buf = list_first_entry(&stream->buf_head,
struct rkcif_buffer, queue);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
list_del(&buf->queue);
}
out:
mutex_unlock(&dev->hw_dev->dev_lock);
return ret;
}
static struct vb2_ops rkcif_vb2_ops = {
.queue_setup = rkcif_queue_setup,
.buf_queue = rkcif_buf_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.stop_streaming = rkcif_stop_streaming,
.start_streaming = rkcif_start_streaming,
};
static int rkcif_init_vb2_queue(struct vb2_queue *q,
struct rkcif_stream *stream,
enum v4l2_buf_type buf_type)
{
struct rkcif_hw *hw_dev = stream->cifdev->hw_dev;
q->type = buf_type;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->drv_priv = stream;
q->ops = &rkcif_vb2_ops;
if (hw_dev->iommu_en)
q->mem_ops = &vb2_dma_sg_memops;
else
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = sizeof(struct rkcif_buffer);
if (stream->cifdev->is_use_dummybuf)
q->min_buffers_needed = 1;
else
q->min_buffers_needed = CIF_REQ_BUFS_MIN;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &stream->vnode.vlock;
q->dev = hw_dev->dev;
q->allow_cache_hints = 1;
q->bidirectional = 1;
q->gfp_flags = GFP_DMA32;
return vb2_queue_init(q);
}
static void rkcif_set_fmt(struct rkcif_stream *stream,
struct v4l2_pix_format_mplane *pixm,
bool try)
{
struct rkcif_device *dev = stream->cifdev;
const struct cif_output_fmt *fmt;
const struct cif_input_fmt *cif_fmt_in = NULL;
struct v4l2_rect input_rect;
unsigned int imagesize = 0, ex_imagesize = 0, planes;
u32 xsubs = 1, ysubs = 1, i;
struct rkmodule_hdr_cfg hdr_cfg;
struct rkcif_extend_info *extend_line = &stream->extend_line;
int ret, vc;
fmt = find_output_fmt(stream, pixm->pixelformat);
if (!fmt)
fmt = &out_fmts[0];
input_rect.width = RKCIF_DEFAULT_WIDTH;
input_rect.height = RKCIF_DEFAULT_HEIGHT;
if (dev->terminal_sensor.sd) {
cif_fmt_in = get_input_fmt(dev->terminal_sensor.sd,
&input_rect, stream->id, &vc);
stream->cif_fmt_in = cif_fmt_in;
}
if (dev->terminal_sensor.sd) {
ret = v4l2_subdev_call(dev->terminal_sensor.sd,
core, ioctl,
RKMODULE_GET_HDR_CFG,
&hdr_cfg);
if (!ret)
dev->hdr.mode = hdr_cfg.hdr_mode;
else
dev->hdr.mode = NO_HDR;
dev->terminal_sensor.raw_rect = input_rect;
}
/* CIF has not scale function,
* the size should not be larger than input
*/
pixm->width = clamp_t(u32, pixm->width,
CIF_MIN_WIDTH, input_rect.width);
pixm->height = clamp_t(u32, pixm->height,
CIF_MIN_HEIGHT, input_rect.height);
pixm->num_planes = fmt->mplanes;
pixm->field = V4L2_FIELD_NONE;
pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
rkcif_sync_crop_info(stream);
/* calculate plane size and image size */
fcc_xysubs(fmt->fourcc, &xsubs, &ysubs);
planes = fmt->cplanes ? fmt->cplanes : fmt->mplanes;
for (i = 0; i < planes; i++) {
struct v4l2_plane_pix_format *plane_fmt;
int width, height, bpl, size, bpp, ex_size;
if (i == 0) {
if (stream->crop_enable) {
width = stream->crop[CROP_SRC_ACT].width;
height = stream->crop[CROP_SRC_ACT].height;
} else {
width = pixm->width;
height = pixm->height;
}
} else {
if (stream->crop_enable) {
width = stream->crop[CROP_SRC_ACT].width / xsubs;
height = stream->crop[CROP_SRC_ACT].height / ysubs;
} else {
width = pixm->width / xsubs;
height = pixm->height / ysubs;
}
}
extend_line->pixm.height = height + RKMODULE_EXTEND_LINE;
/* compact mode need bytesperline 4bytes align,
* align 8 to bring into correspondence with virtual width.
* to optimize reading and writing of ddr, aliged with 256.
*/
if (fmt->fmt_type == CIF_FMT_TYPE_RAW &&
(stream->cif_fmt_in->mbus_code == MEDIA_BUS_FMT_EBD_1X8 ||
stream->cif_fmt_in->mbus_code == MEDIA_BUS_FMT_SPD_2X8)) {
stream->is_compact = false;
}
if (fmt->fmt_type == CIF_FMT_TYPE_RAW && stream->is_compact &&
(dev->active_sensor->mbus.type == V4L2_MBUS_CSI2 ||
dev->active_sensor->mbus.type == V4L2_MBUS_CCP2) &&
fmt->csi_fmt_val != CSI_WRDDR_TYPE_RGB888) {
bpl = ALIGN(width * fmt->raw_bpp / 8, 256);
} else if (fmt->fourcc == V4L2_PIX_FMT_GREY ||
fmt->fourcc == V4L2_PIX_FMT_SRGGB8 ||
fmt->fourcc == V4L2_PIX_FMT_SGRBG8 ||
fmt->fourcc == V4L2_PIX_FMT_SGBRG8 ||
fmt->fourcc == V4L2_PIX_FMT_SBGGR8) {
bpl = ALIGN(width * fmt->raw_bpp / 8, 256);
} else {
bpp = rkcif_align_bits_per_pixel(stream, fmt, i);
bpl = width * bpp / CIF_YUV_STORED_BIT_WIDTH;
}
size = bpl * height;
imagesize += size;
ex_size = bpl * extend_line->pixm.height;
ex_imagesize += ex_size;
if (fmt->mplanes > i) {
/* Set bpl and size for each mplane */
plane_fmt = pixm->plane_fmt + i;
plane_fmt->bytesperline = bpl;
plane_fmt->sizeimage = size;
plane_fmt = extend_line->pixm.plane_fmt + i;
plane_fmt->bytesperline = bpl;
plane_fmt->sizeimage = ex_size;
}
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"C-Plane %i size: %d, Total imagesize: %d\n",
i, size, imagesize);
}
/* convert to non-MPLANE format.
* It's important since we want to unify non-MPLANE
* and MPLANE.
*/
if (fmt->mplanes == 1) {
pixm->plane_fmt[0].sizeimage = imagesize;
extend_line->pixm.plane_fmt[0].sizeimage = ex_imagesize;
}
if (!try) {
stream->cif_fmt_out = fmt;
stream->pixm = *pixm;
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"%s: req(%d, %d) out(%d, %d)\n", __func__,
pixm->width, pixm->height,
stream->pixm.width, stream->pixm.height);
}
}
void rkcif_stream_init(struct rkcif_device *dev, u32 id)
{
struct rkcif_stream *stream = &dev->stream[id];
struct v4l2_pix_format_mplane pixm;
int i;
memset(stream, 0, sizeof(*stream));
memset(&pixm, 0, sizeof(pixm));
stream->id = id;
stream->cifdev = dev;
INIT_LIST_HEAD(&stream->buf_head);
spin_lock_init(&stream->vbq_lock);
spin_lock_init(&stream->fps_lock);
stream->state = RKCIF_STATE_READY;
init_waitqueue_head(&stream->wq_stopped);
/* Set default format */
pixm.pixelformat = V4L2_PIX_FMT_NV12;
pixm.width = RKCIF_DEFAULT_WIDTH;
pixm.height = RKCIF_DEFAULT_HEIGHT;
rkcif_set_fmt(stream, &pixm, false);
for (i = 0; i < CROP_SRC_MAX; i++) {
stream->crop[i].left = 0;
stream->crop[i].top = 0;
stream->crop[i].width = RKCIF_DEFAULT_WIDTH;
stream->crop[i].height = RKCIF_DEFAULT_HEIGHT;
}
stream->crop_enable = false;
stream->crop_dyn_en = false;
stream->crop_mask = 0x0;
if (dev->inf_id == RKCIF_DVP) {
if (dev->chip_id <= CHIP_RK3568_CIF)
stream->is_compact = false;
else
stream->is_compact = true;
} else {
if (dev->chip_id >= CHIP_RV1126_CIF)
stream->is_compact = true;
else
stream->is_compact = false;
}
stream->is_high_align = false;
if (dev->chip_id == CHIP_RV1126_CIF ||
dev->chip_id == CHIP_RV1126_CIF_LITE)
stream->extend_line.is_extended = true;
else
stream->extend_line.is_extended = false;
stream->is_dvp_yuv_addr_init = false;
stream->is_fs_fe_not_paired = false;
stream->fs_cnt_in_single_frame = 0;
if (dev->wait_line) {
dev->wait_line_cache = dev->wait_line;
dev->wait_line_bak = dev->wait_line;
stream->is_line_wake_up = true;
} else {
stream->is_line_wake_up = false;
dev->wait_line_cache = 0;
dev->wait_line_bak = 0;
}
}
static int rkcif_fh_open(struct file *filp)
{
struct video_device *vdev = video_devdata(filp);
struct rkcif_vdev_node *vnode = vdev_to_node(vdev);
struct rkcif_stream *stream = to_rkcif_stream(vnode);
struct rkcif_device *cifdev = stream->cifdev;
int ret;
ret = rkcif_attach_hw(cifdev);
if (ret)
return ret;
/* Make sure active sensor is valid before .set_fmt() */
ret = rkcif_update_sensor_info(stream);
if (ret < 0) {
v4l2_err(vdev,
"update sensor info failed %d\n",
ret);
return ret;
}
/* enable clocks/power-domains */
ret = pm_runtime_get_sync(cifdev->dev);
if (ret < 0) {
v4l2_err(vdev, "Failed to get runtime pm, %d\n",
ret);
return ret;
}
/*
* Soft reset via CRU.
* Because CRU would reset iommu too, so there's not chance
* to reset cif once we hold buffers after buf queued
*/
if (cifdev->chip_id == CHIP_RK1808_CIF ||
cifdev->chip_id == CHIP_RV1126_CIF ||
cifdev->chip_id == CHIP_RV1126_CIF_LITE ||
cifdev->chip_id == CHIP_RK3568_CIF) {
mutex_lock(&cifdev->stream_lock);
if (!atomic_read(&cifdev->fh_cnt))
rkcif_soft_reset(cifdev, true);
atomic_inc(&cifdev->fh_cnt);
mutex_unlock(&cifdev->stream_lock);
} else {
rkcif_soft_reset(cifdev, true);
}
ret = v4l2_fh_open(filp);
if (!ret) {
ret = v4l2_pipeline_pm_use(&vnode->vdev.entity, 1);
if (ret < 0)
vb2_fop_release(filp);
}
return ret;
}
static int rkcif_fh_release(struct file *filp)
{
struct video_device *vdev = video_devdata(filp);
struct rkcif_vdev_node *vnode = vdev_to_node(vdev);
struct rkcif_stream *stream = to_rkcif_stream(vnode);
struct rkcif_device *cifdev = stream->cifdev;
int ret = 0;
ret = vb2_fop_release(filp);
if (!ret) {
ret = v4l2_pipeline_pm_use(&vnode->vdev.entity, 0);
if (ret < 0)
v4l2_err(&cifdev->v4l2_dev,
"set pipeline power failed %d\n", ret);
}
mutex_lock(&cifdev->stream_lock);
if (!atomic_dec_return(&cifdev->fh_cnt))
rkcif_soft_reset(cifdev, true);
else if (atomic_read(&cifdev->fh_cnt) < 0)
atomic_set(&cifdev->fh_cnt, 0);
mutex_unlock(&cifdev->stream_lock);
pm_runtime_put_sync(cifdev->dev);
return ret;
}
static const struct v4l2_file_operations rkcif_fops = {
.open = rkcif_fh_open,
.release = rkcif_fh_release,
.unlocked_ioctl = video_ioctl2,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = video_ioctl2,
#endif
};
static int rkcif_enum_input(struct file *file, void *priv,
struct v4l2_input *input)
{
if (input->index > 0)
return -EINVAL;
input->type = V4L2_INPUT_TYPE_CAMERA;
strlcpy(input->name, "Camera", sizeof(input->name));
return 0;
}
static int rkcif_try_fmt_vid_cap_mplane(struct file *file, void *fh,
struct v4l2_format *f)
{
struct rkcif_stream *stream = video_drvdata(file);
rkcif_set_fmt(stream, &f->fmt.pix_mp, true);
return 0;
}
static int rkcif_enum_framesizes(struct file *file, void *prov,
struct v4l2_frmsizeenum *fsize)
{
struct v4l2_frmsize_stepwise *s = &fsize->stepwise;
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
struct v4l2_rect input_rect;
int vc;
if (fsize->index != 0)
return -EINVAL;
if (!find_output_fmt(stream, fsize->pixel_format))
return -EINVAL;
input_rect.width = RKCIF_DEFAULT_WIDTH;
input_rect.height = RKCIF_DEFAULT_HEIGHT;
if (dev->terminal_sensor.sd)
get_input_fmt(dev->terminal_sensor.sd,
&input_rect, stream->id, &vc);
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
s->min_width = CIF_MIN_WIDTH;
s->min_height = CIF_MIN_HEIGHT;
s->max_width = input_rect.width;
s->max_height = input_rect.height;
s->step_width = OUTPUT_STEP_WISE;
s->step_height = OUTPUT_STEP_WISE;
return 0;
}
static int rkcif_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *fival)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *sensor = dev->active_sensor;
struct v4l2_subdev_frame_interval fi;
int ret;
if (fival->index != 0)
return -EINVAL;
if (!sensor || !sensor->sd) {
/* TODO: active_sensor is NULL if using DMARX path */
v4l2_err(&dev->v4l2_dev, "%s Not active sensor\n", __func__);
return -ENODEV;
}
ret = v4l2_subdev_call(sensor->sd, video, g_frame_interval, &fi);
if (ret && ret != -ENOIOCTLCMD) {
return ret;
} else if (ret == -ENOIOCTLCMD) {
/* Set a default value for sensors not implements ioctl */
fi.interval.numerator = 1;
fi.interval.denominator = 30;
}
fival->type = V4L2_FRMIVAL_TYPE_CONTINUOUS;
fival->stepwise.step.numerator = 1;
fival->stepwise.step.denominator = 1;
fival->stepwise.max.numerator = 1;
fival->stepwise.max.denominator = 1;
fival->stepwise.min.numerator = fi.interval.numerator;
fival->stepwise.min.denominator = fi.interval.denominator;
return 0;
}
static int rkcif_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
const struct cif_output_fmt *fmt = NULL;
if (f->index >= ARRAY_SIZE(out_fmts))
return -EINVAL;
fmt = &out_fmts[f->index];
f->pixelformat = fmt->fourcc;
return 0;
}
static int rkcif_s_fmt_vid_cap_mplane(struct file *file,
void *priv, struct v4l2_format *f)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
if (vb2_is_busy(&stream->vnode.buf_queue)) {
v4l2_err(&dev->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
rkcif_set_fmt(stream, &f->fmt.pix_mp, false);
return 0;
}
static int rkcif_g_fmt_vid_cap_mplane(struct file *file, void *fh,
struct v4l2_format *f)
{
struct rkcif_stream *stream = video_drvdata(file);
f->fmt.pix_mp = stream->pixm;
return 0;
}
static int rkcif_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct rkcif_stream *stream = video_drvdata(file);
struct device *dev = stream->cifdev->dev;
strlcpy(cap->driver, dev->driver->name, sizeof(cap->driver));
strlcpy(cap->card, dev->driver->name, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", dev_name(dev));
return 0;
}
static int rkcif_cropcap(struct file *file, void *fh,
struct v4l2_cropcap *cap)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
struct v4l2_rect *raw_rect = &dev->terminal_sensor.raw_rect;
int ret = 0;
if (stream->crop_mask & CROP_SRC_SENSOR) {
cap->bounds.left = stream->crop[CROP_SRC_SENSOR].left;
cap->bounds.top = stream->crop[CROP_SRC_SENSOR].top;
cap->bounds.width = stream->crop[CROP_SRC_SENSOR].width;
cap->bounds.height = stream->crop[CROP_SRC_SENSOR].height;
} else {
cap->bounds.left = raw_rect->left;
cap->bounds.top = raw_rect->top;
cap->bounds.width = raw_rect->width;
cap->bounds.height = raw_rect->height;
}
cap->defrect = cap->bounds;
cap->pixelaspect.numerator = 1;
cap->pixelaspect.denominator = 1;
return ret;
}
static int rkcif_s_crop(struct file *file, void *fh, const struct v4l2_crop *a)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
const struct v4l2_rect *rect = &a->c;
struct v4l2_rect sensor_crop;
struct v4l2_rect *raw_rect = &dev->terminal_sensor.raw_rect;
int ret;
ret = rkcif_sanity_check_fmt(stream, rect);
if (ret) {
v4l2_err(&dev->v4l2_dev, "set crop failed\n");
return ret;
}
if (stream->crop_mask & CROP_SRC_SENSOR) {
sensor_crop = stream->crop[CROP_SRC_SENSOR];
if (rect->left + rect->width > sensor_crop.width ||
rect->top + rect->height > sensor_crop.height) {
v4l2_err(&dev->v4l2_dev,
"crop size is bigger than sensor input:left:%d, top:%d, width:%d, height:%d\n",
sensor_crop.left, sensor_crop.top, sensor_crop.width, sensor_crop.height);
return -EINVAL;
}
} else {
if (rect->left + rect->width > raw_rect->width ||
rect->top + rect->height > raw_rect->height) {
v4l2_err(&dev->v4l2_dev,
"crop size is bigger than sensor raw input:left:%d, top:%d, width:%d, height:%d\n",
raw_rect->left, raw_rect->top, raw_rect->width, raw_rect->height);
return -EINVAL;
}
}
stream->crop[CROP_SRC_USR] = *rect;
stream->crop_enable = true;
stream->crop_mask |= CROP_SRC_USR_MASK;
stream->crop[CROP_SRC_ACT] = stream->crop[CROP_SRC_USR];
if (stream->crop_mask & CROP_SRC_SENSOR) {
stream->crop[CROP_SRC_ACT].left = sensor_crop.left + stream->crop[CROP_SRC_USR].left;
stream->crop[CROP_SRC_ACT].top = sensor_crop.top + stream->crop[CROP_SRC_USR].top;
}
if (stream->state == RKCIF_STATE_STREAMING) {
stream->crop_dyn_en = true;
v4l2_info(&dev->v4l2_dev, "enable dynamic crop, S_CROP(%ux%u@%u:%u) type: %d\n",
rect->width, rect->height, rect->left, rect->top, a->type);
} else {
v4l2_info(&dev->v4l2_dev, "static crop, S_CROP(%ux%u@%u:%u) type: %d\n",
rect->width, rect->height, rect->left, rect->top, a->type);
}
return ret;
}
static int rkcif_g_crop(struct file *file, void *fh, struct v4l2_crop *a)
{
struct rkcif_stream *stream = video_drvdata(file);
a->c = stream->crop[CROP_SRC_ACT];
return 0;
}
static int rkcif_s_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
struct v4l2_subdev *sensor_sd;
struct v4l2_subdev_selection sd_sel;
u16 pad = 0;
int ret = 0;
if (!s) {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "sel is null\n");
goto err;
}
sensor_sd = get_remote_sensor(stream, &pad);
sd_sel.r = s->r;
sd_sel.pad = pad;
sd_sel.target = s->target;
sd_sel.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(sensor_sd, pad, set_selection, NULL, &sd_sel);
if (!ret) {
s->r = sd_sel.r;
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "%s: pad:%d, which:%d, target:%d\n",
__func__, pad, sd_sel.which, sd_sel.target);
}
return ret;
err:
return -EINVAL;
}
static int rkcif_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
struct v4l2_subdev *sensor_sd;
struct v4l2_subdev_selection sd_sel;
u16 pad = 0;
int ret = 0;
if (!s) {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "sel is null\n");
goto err;
}
if (s->target == V4L2_SEL_TGT_CROP_BOUNDS) {
sensor_sd = get_remote_sensor(stream, &pad);
sd_sel.pad = pad;
sd_sel.target = s->target;
sd_sel.which = V4L2_SUBDEV_FORMAT_ACTIVE;
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "%s(line:%d): sd:%s pad:%d, which:%d, target:%d\n",
__func__, __LINE__, sensor_sd->name, pad, sd_sel.which, sd_sel.target);
ret = v4l2_subdev_call(sensor_sd, pad, get_selection, NULL, &sd_sel);
if (!ret) {
s->r = sd_sel.r;
} else {
s->r.left = 0;
s->r.top = 0;
s->r.width = stream->pixm.width;
s->r.height = stream->pixm.height;
}
} else if (s->target == V4L2_SEL_TGT_CROP) {
if (stream->crop_mask & (CROP_SRC_USR_MASK | CROP_SRC_SENSOR_MASK)) {
s->r = stream->crop[CROP_SRC_ACT];
} else {
s->r.left = 0;
s->r.top = 0;
s->r.width = stream->pixm.width;
s->r.height = stream->pixm.height;
}
} else {
goto err;
}
return ret;
err:
return -EINVAL;
}
static int rkcif_do_reset_work(struct rkcif_device *cif_dev,
enum rkmodule_reset_src reset_src);
static long rkcif_ioctl_default(struct file *file, void *fh,
bool valid_prio, unsigned int cmd, void *arg)
{
struct rkcif_stream *stream = video_drvdata(file);
struct rkcif_device *dev = stream->cifdev;
const struct cif_input_fmt *in_fmt;
struct v4l2_rect rect;
int vc = 0;
struct rkcif_reset_info *reset_info;
int reset_src = 0;
unsigned long flags;
switch (cmd) {
case RKCIF_CMD_GET_CSI_MEMORY_MODE:
if (stream->is_compact) {
*(int *)arg = CSI_LVDS_MEM_COMPACT;
} else {
if (stream->is_high_align)
*(int *)arg = CSI_LVDS_MEM_WORD_HIGH_ALIGN;
else
*(int *)arg = CSI_LVDS_MEM_WORD_LOW_ALIGN;
}
break;
case RKCIF_CMD_SET_CSI_MEMORY_MODE:
if (dev->terminal_sensor.sd) {
in_fmt = get_input_fmt(dev->terminal_sensor.sd, &rect, 0, &vc);
if (in_fmt == NULL) {
v4l2_err(&dev->v4l2_dev, "can't get sensor input format\n");
return -EINVAL;
}
} else {
v4l2_err(&dev->v4l2_dev, "can't get sensor device\n");
return -EINVAL;
}
if (*(int *)arg == CSI_LVDS_MEM_COMPACT) {
if (((dev->inf_id == RKCIF_DVP && dev->chip_id <= CHIP_RK3568_CIF) ||
(dev->inf_id == RKCIF_MIPI_LVDS && dev->chip_id < CHIP_RV1126_CIF)) &&
in_fmt->csi_fmt_val != CSI_WRDDR_TYPE_RAW8) {
v4l2_err(&dev->v4l2_dev, "device not support compact\n");
return -EINVAL;
}
stream->is_compact = true;
stream->is_high_align = false;
} else if (*(int *)arg == CSI_LVDS_MEM_WORD_HIGH_ALIGN) {
stream->is_compact = false;
stream->is_high_align = true;
} else {
stream->is_compact = false;
stream->is_high_align = false;
}
break;
case RKCIF_CMD_GET_RESET_INFO:
reset_info = (struct rkcif_reset_info *)arg;
spin_lock_irqsave(&dev->hw_dev->spin_lock, flags);
*reset_info = dev->hw_dev->reset_info;
spin_unlock_irqrestore(&dev->hw_dev->spin_lock, flags);
break;
case RKCIF_CMD_SET_RESET:
reset_src = *(int *)arg;
spin_lock_irqsave(&dev->hw_dev->spin_lock, flags);
if (dev->hw_dev->reset_info.is_need_reset)
dev->hw_dev->reset_info.is_need_reset = 0;
spin_unlock_irqrestore(&dev->hw_dev->spin_lock, flags);
return rkcif_do_reset_work(dev, reset_src);
default:
return -EINVAL;
}
return 0;
}
static const struct v4l2_ioctl_ops rkcif_v4l2_ioctl_ops = {
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_enum_input = rkcif_enum_input,
.vidioc_try_fmt_vid_cap_mplane = rkcif_try_fmt_vid_cap_mplane,
.vidioc_enum_fmt_vid_cap_mplane = rkcif_enum_fmt_vid_cap_mplane,
.vidioc_s_fmt_vid_cap_mplane = rkcif_s_fmt_vid_cap_mplane,
.vidioc_g_fmt_vid_cap_mplane = rkcif_g_fmt_vid_cap_mplane,
.vidioc_querycap = rkcif_querycap,
.vidioc_cropcap = rkcif_cropcap,
.vidioc_s_crop = rkcif_s_crop,
.vidioc_g_crop = rkcif_g_crop,
.vidioc_s_selection = rkcif_s_selection,
.vidioc_g_selection = rkcif_g_selection,
.vidioc_enum_frameintervals = rkcif_enum_frameintervals,
.vidioc_enum_framesizes = rkcif_enum_framesizes,
.vidioc_default = rkcif_ioctl_default,
};
static void rkcif_unregister_stream_vdev(struct rkcif_stream *stream)
{
media_entity_cleanup(&stream->vnode.vdev.entity);
video_unregister_device(&stream->vnode.vdev);
}
static int rkcif_register_stream_vdev(struct rkcif_stream *stream,
bool is_multi_input)
{
struct rkcif_device *dev = stream->cifdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct video_device *vdev = &stream->vnode.vdev;
struct rkcif_vdev_node *node;
int ret = 0;
char *vdev_name;
if (dev->chip_id < CHIP_RV1126_CIF) {
if (is_multi_input) {
switch (stream->id) {
case RKCIF_STREAM_MIPI_ID0:
vdev_name = CIF_MIPI_ID0_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID1:
vdev_name = CIF_MIPI_ID1_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID2:
vdev_name = CIF_MIPI_ID2_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID3:
vdev_name = CIF_MIPI_ID3_VDEV_NAME;
break;
case RKCIF_STREAM_DVP:
vdev_name = CIF_DVP_VDEV_NAME;
break;
default:
v4l2_err(v4l2_dev, "Invalid stream\n");
goto unreg;
}
} else {
vdev_name = CIF_VIDEODEVICE_NAME;
}
} else {
if (dev->inf_id == RKCIF_MIPI_LVDS) {
switch (stream->id) {
case RKCIF_STREAM_MIPI_ID0:
vdev_name = CIF_MIPI_ID0_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID1:
vdev_name = CIF_MIPI_ID1_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID2:
vdev_name = CIF_MIPI_ID2_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID3:
vdev_name = CIF_MIPI_ID3_VDEV_NAME;
break;
default:
v4l2_err(v4l2_dev, "Invalid stream\n");
goto unreg;
}
} else {
switch (stream->id) {
case RKCIF_STREAM_MIPI_ID0:
vdev_name = CIF_DVP_ID0_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID1:
vdev_name = CIF_DVP_ID1_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID2:
vdev_name = CIF_DVP_ID2_VDEV_NAME;
break;
case RKCIF_STREAM_MIPI_ID3:
vdev_name = CIF_DVP_ID3_VDEV_NAME;
break;
default:
v4l2_err(v4l2_dev, "Invalid stream\n");
goto unreg;
}
}
}
strlcpy(vdev->name, vdev_name, sizeof(vdev->name));
node = vdev_to_node(vdev);
mutex_init(&node->vlock);
vdev->ioctl_ops = &rkcif_v4l2_ioctl_ops;
vdev->release = video_device_release_empty;
vdev->fops = &rkcif_fops;
vdev->minor = -1;
vdev->v4l2_dev = v4l2_dev;
vdev->lock = &node->vlock;
vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
V4L2_CAP_STREAMING;
video_set_drvdata(vdev, stream);
vdev->vfl_dir = VFL_DIR_RX;
node->pad.flags = MEDIA_PAD_FL_SINK;
rkcif_init_vb2_queue(&node->buf_queue, stream,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
vdev->queue = &node->buf_queue;
ret = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
if (ret < 0) {
v4l2_err(v4l2_dev,
"video_register_device failed with error %d\n", ret);
return ret;
}
ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
if (ret < 0)
goto unreg;
return 0;
unreg:
video_unregister_device(vdev);
return ret;
}
void rkcif_unregister_stream_vdevs(struct rkcif_device *dev,
int stream_num)
{
struct rkcif_stream *stream;
int i;
for (i = 0; i < stream_num; i++) {
stream = &dev->stream[i];
rkcif_unregister_stream_vdev(stream);
}
}
int rkcif_register_stream_vdevs(struct rkcif_device *dev,
int stream_num,
bool is_multi_input)
{
struct rkcif_stream *stream;
int i, j, ret;
for (i = 0; i < stream_num; i++) {
stream = &dev->stream[i];
stream->cifdev = dev;
ret = rkcif_register_stream_vdev(stream, is_multi_input);
if (ret < 0)
goto err;
}
return 0;
err:
for (j = 0; j < i; j++) {
stream = &dev->stream[j];
rkcif_unregister_stream_vdev(stream);
}
return ret;
}
static struct v4l2_subdev *get_lvds_remote_sensor(struct v4l2_subdev *sd)
{
struct media_pad *local, *remote;
struct media_entity *sensor_me;
local = &sd->entity.pads[RKCIF_LVDS_PAD_SINK];
remote = media_entity_remote_pad(local);
if (!remote) {
v4l2_warn(sd, "No link between dphy and sensor with lvds\n");
return NULL;
}
sensor_me = media_entity_remote_pad(local)->entity;
return media_entity_to_v4l2_subdev(sensor_me);
}
static int rkcif_lvds_subdev_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote,
u32 flags)
{
return 0;
}
static int rkcif_lvds_sd_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct v4l2_subdev *sensor = get_lvds_remote_sensor(sd);
/*
* Do not allow format changes and just relay whatever
* set currently in the sensor.
*/
return v4l2_subdev_call(sensor, pad, get_fmt, NULL, fmt);
}
static int rkcif_lvds_sd_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct rkcif_lvds_subdev *subdev = container_of(sd, struct rkcif_lvds_subdev, sd);
struct v4l2_subdev *sensor = get_lvds_remote_sensor(sd);
int ret;
/*
* Do not allow format changes and just relay whatever
* set currently in the sensor.
*/
ret = v4l2_subdev_call(sensor, pad, get_fmt, NULL, fmt);
if (!ret)
subdev->in_fmt = fmt->format;
return ret;
}
static struct v4l2_rect *rkcif_lvds_sd_get_crop(struct rkcif_lvds_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_crop(&subdev->sd, cfg, RKCIF_LVDS_PAD_SINK);
else
return &subdev->crop;
}
static int rkcif_lvds_sd_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct rkcif_lvds_subdev *subdev = container_of(sd, struct rkcif_lvds_subdev, sd);
struct v4l2_subdev *sensor = get_lvds_remote_sensor(sd);
int ret = 0;
ret = v4l2_subdev_call(sensor, pad, set_selection,
cfg, sel);
if (!ret)
subdev->crop = sel->r;
return ret;
}
static int rkcif_lvds_sd_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct rkcif_lvds_subdev *subdev = container_of(sd, struct rkcif_lvds_subdev, sd);
struct v4l2_subdev *sensor = get_lvds_remote_sensor(sd);
struct v4l2_subdev_format fmt;
int ret = 0;
if (!sel) {
v4l2_dbg(1, rkcif_debug, sd, "sel is null\n");
goto err;
}
if (sel->pad > RKCIF_LVDS_PAD_SRC_ID3) {
v4l2_dbg(1, rkcif_debug, sd, "pad[%d] isn't matched\n", sel->pad);
goto err;
}
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
ret = v4l2_subdev_call(sensor, pad, get_selection,
cfg, sel);
if (ret) {
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(sensor, pad, get_fmt, NULL, &fmt);
if (!ret) {
subdev->in_fmt = fmt.format;
sel->r.top = 0;
sel->r.left = 0;
sel->r.width = subdev->in_fmt.width;
sel->r.height = subdev->in_fmt.height;
subdev->crop = sel->r;
} else {
sel->r = subdev->crop;
}
} else {
subdev->crop = sel->r;
}
} else {
sel->r = *v4l2_subdev_get_try_crop(sd, cfg, sel->pad);
}
break;
case V4L2_SEL_TGT_CROP:
sel->r = *rkcif_lvds_sd_get_crop(subdev, cfg, sel->which);
break;
default:
return -EINVAL;
}
return 0;
err:
return -EINVAL;
}
static int rkcif_lvds_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *mbus)
{
struct v4l2_subdev *sensor_sd = get_lvds_remote_sensor(sd);
int ret;
ret = v4l2_subdev_call(sensor_sd, video, g_mbus_config, mbus);
if (ret)
return ret;
return 0;
}
static int rkcif_lvds_sd_s_stream(struct v4l2_subdev *sd, int on)
{
struct rkcif_lvds_subdev *subdev = container_of(sd, struct rkcif_lvds_subdev, sd);
if (on)
atomic_set(&subdev->frm_sync_seq, 0);
return 0;
}
static int rkcif_lvds_sd_s_power(struct v4l2_subdev *sd, int on)
{
return 0;
}
static int rkcif_sof_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
if (sub->type != V4L2_EVENT_FRAME_SYNC)
return -EINVAL;
return v4l2_event_subscribe(fh, sub, 0, NULL);
}
static const struct media_entity_operations rkcif_lvds_sd_media_ops = {
.link_setup = rkcif_lvds_subdev_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_pad_ops rkcif_lvds_sd_pad_ops = {
.set_fmt = rkcif_lvds_sd_set_fmt,
.get_fmt = rkcif_lvds_sd_get_fmt,
.set_selection = rkcif_lvds_sd_set_selection,
.get_selection = rkcif_lvds_sd_get_selection,
};
static const struct v4l2_subdev_video_ops rkcif_lvds_sd_video_ops = {
.g_mbus_config = rkcif_lvds_g_mbus_config,
.s_stream = rkcif_lvds_sd_s_stream,
};
static const struct v4l2_subdev_core_ops rkcif_lvds_sd_core_ops = {
.s_power = rkcif_lvds_sd_s_power,
.subscribe_event = rkcif_sof_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static struct v4l2_subdev_ops rkcif_lvds_sd_ops = {
.core = &rkcif_lvds_sd_core_ops,
.video = &rkcif_lvds_sd_video_ops,
.pad = &rkcif_lvds_sd_pad_ops,
};
static void rkcif_lvds_event_inc_sof(struct rkcif_device *dev)
{
struct rkcif_lvds_subdev *subdev = &dev->lvds_subdev;
if (subdev) {
struct v4l2_event event = {
.type = V4L2_EVENT_FRAME_SYNC,
.u.frame_sync.frame_sequence =
atomic_inc_return(&subdev->frm_sync_seq) - 1,
};
v4l2_event_queue(subdev->sd.devnode, &event);
}
}
static u32 rkcif_lvds_get_sof(struct rkcif_device *dev)
{
if (dev)
return atomic_read(&dev->lvds_subdev.frm_sync_seq) - 1;
return 0;
}
static void rkcif_lvds_set_sof(struct rkcif_device *dev, u32 seq)
{
if (dev)
atomic_set(&dev->lvds_subdev.frm_sync_seq, seq);
}
int rkcif_register_lvds_subdev(struct rkcif_device *dev)
{
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct rkcif_lvds_subdev *lvds_subdev = &dev->lvds_subdev;
struct v4l2_subdev *sd;
int ret;
memset(lvds_subdev, 0, sizeof(*lvds_subdev));
lvds_subdev->cifdev = dev;
sd = &lvds_subdev->sd;
lvds_subdev->state = RKCIF_LVDS_STOP;
v4l2_subdev_init(sd, &rkcif_lvds_sd_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
sd->entity.ops = &rkcif_lvds_sd_media_ops;
if (dev->chip_id == CHIP_RV1126_CIF)
snprintf(sd->name, sizeof(sd->name), "rkcif-lvds-subdev");
else
snprintf(sd->name, sizeof(sd->name), "rkcif-lite-lvds-subdev");
lvds_subdev->pads[RKCIF_LVDS_PAD_SINK].flags =
MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT;
lvds_subdev->pads[RKCIF_LVDS_PAD_SRC_ID0].flags = MEDIA_PAD_FL_SOURCE;
lvds_subdev->pads[RKCIF_LVDS_PAD_SRC_ID1].flags = MEDIA_PAD_FL_SOURCE;
lvds_subdev->pads[RKCIF_LVDS_PAD_SRC_ID2].flags = MEDIA_PAD_FL_SOURCE;
lvds_subdev->pads[RKCIF_LVDS_PAD_SRC_ID3].flags = MEDIA_PAD_FL_SOURCE;
lvds_subdev->in_fmt.width = RKCIF_DEFAULT_WIDTH;
lvds_subdev->in_fmt.height = RKCIF_DEFAULT_HEIGHT;
lvds_subdev->crop.left = 0;
lvds_subdev->crop.top = 0;
lvds_subdev->crop.width = RKCIF_DEFAULT_WIDTH;
lvds_subdev->crop.height = RKCIF_DEFAULT_HEIGHT;
ret = media_entity_pads_init(&sd->entity, RKCIF_LVDS_PAD_MAX,
lvds_subdev->pads);
if (ret < 0)
return ret;
sd->owner = THIS_MODULE;
v4l2_set_subdevdata(sd, lvds_subdev);
ret = v4l2_device_register_subdev(v4l2_dev, sd);
if (ret < 0)
goto free_media;
ret = v4l2_device_register_subdev_nodes(v4l2_dev);
if (ret < 0)
goto free_subdev;
return ret;
free_subdev:
v4l2_device_unregister_subdev(sd);
free_media:
media_entity_cleanup(&sd->entity);
v4l2_err(sd, "Failed to register subdev, ret:%d\n", ret);
return ret;
}
void rkcif_unregister_lvds_subdev(struct rkcif_device *dev)
{
struct v4l2_subdev *sd = &dev->lvds_subdev.sd;
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
}
static void rkcif_dvp_event_inc_sof(struct rkcif_device *dev)
{
struct rkcif_dvp_sof_subdev *subdev = &dev->dvp_sof_subdev;
if (subdev) {
struct v4l2_event event = {
.type = V4L2_EVENT_FRAME_SYNC,
.u.frame_sync.frame_sequence =
atomic_inc_return(&subdev->frm_sync_seq) - 1,
};
v4l2_event_queue(subdev->sd.devnode, &event);
}
}
static u32 rkcif_dvp_get_sof(struct rkcif_device *dev)
{
if (dev)
return atomic_read(&dev->dvp_sof_subdev.frm_sync_seq) - 1;
return 0;
}
static void rkcif_dvp_set_sof(struct rkcif_device *dev, u32 seq)
{
if (dev)
atomic_set(&dev->dvp_sof_subdev.frm_sync_seq, seq);
}
static const struct v4l2_subdev_core_ops rkcif_dvp_sof_sd_core_ops = {
.subscribe_event = rkcif_sof_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static struct v4l2_subdev_ops rkcif_dvp_sof_sd_ops = {
.core = &rkcif_dvp_sof_sd_core_ops,
};
int rkcif_register_dvp_sof_subdev(struct rkcif_device *dev)
{
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct rkcif_dvp_sof_subdev *subdev = &dev->dvp_sof_subdev;
struct v4l2_subdev *sd;
int ret;
memset(subdev, 0, sizeof(*subdev));
subdev->cifdev = dev;
sd = &subdev->sd;
v4l2_subdev_init(sd, &rkcif_dvp_sof_sd_ops);
sd->owner = THIS_MODULE;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
snprintf(sd->name, sizeof(sd->name), "rkcif-dvp-sof");
v4l2_set_subdevdata(sd, subdev);
ret = v4l2_device_register_subdev(v4l2_dev, sd);
if (ret < 0)
goto end;
ret = v4l2_device_register_subdev_nodes(v4l2_dev);
if (ret < 0)
goto free_subdev;
return ret;
free_subdev:
v4l2_device_unregister_subdev(sd);
end:
v4l2_err(sd, "Failed to register subdev, ret:%d\n", ret);
return ret;
}
void rkcif_unregister_dvp_sof_subdev(struct rkcif_device *dev)
{
struct v4l2_subdev *sd = &dev->dvp_sof_subdev.sd;
v4l2_device_unregister_subdev(sd);
}
static void rkcif_vb_done_oneframe(struct rkcif_stream *stream,
struct vb2_v4l2_buffer *vb_done)
{
const struct cif_output_fmt *fmt = stream->cif_fmt_out;
u32 i;
/* Dequeue a filled buffer */
for (i = 0; i < fmt->mplanes; i++) {
vb2_set_plane_payload(&vb_done->vb2_buf, i,
stream->pixm.plane_fmt[i].sizeimage);
}
if (stream->cifdev->hdr.mode == NO_HDR)
vb_done->vb2_buf.timestamp = ktime_get_ns();
vb2_buffer_done(&vb_done->vb2_buf, VB2_BUF_STATE_DONE);
v4l2_dbg(1, rkcif_debug, &stream->cifdev->v4l2_dev,
"stream[%d] vb done, index: %d, sequence %d\n", stream->id,
vb_done->vb2_buf.index, vb_done->sequence);
}
void rkcif_irq_oneframe(struct rkcif_device *cif_dev)
{
/* TODO: xuhf-debug: add stream type */
struct rkcif_stream *stream;
u32 lastline, lastpix, ctl, cif_frmst, intstat, frmid;
int ret = 0;
intstat = rkcif_read_register(cif_dev, CIF_REG_DVP_INTSTAT);
cif_frmst = rkcif_read_register(cif_dev, CIF_REG_DVP_FRAME_STATUS);
lastline = rkcif_read_register(cif_dev, CIF_REG_DVP_LAST_LINE);
lastpix = rkcif_read_register(cif_dev, CIF_REG_DVP_LAST_PIX);
ctl = rkcif_read_register(cif_dev, CIF_REG_DVP_CTRL);
frmid = CIF_GET_FRAME_ID(cif_frmst);
/* There are two irqs enabled:
* - PST_INF_FRAME_END: cif FIFO is ready, this is prior to FRAME_END
* - FRAME_END: cif has saved frame to memory, a frame ready
*/
stream = &cif_dev->stream[RKCIF_STREAM_CIF];
if ((intstat & PST_INF_FRAME_END)) {
rkcif_write_register(cif_dev, CIF_REG_DVP_INTSTAT,
PST_INF_FRAME_END_CLR);
if (stream->stopping)
/* To stop CIF ASAP, before FRAME_END irq */
rkcif_write_register(cif_dev, CIF_REG_DVP_CTRL,
ctl & (~ENABLE_CAPTURE));
}
if ((intstat & FRAME_END)) {
struct vb2_v4l2_buffer *vb_done = NULL;
rkcif_write_register(cif_dev, CIF_REG_DVP_INTSTAT,
FRAME_END_CLR);
if (stream->stopping) {
rkcif_stream_stop(stream);
stream->stopping = false;
wake_up(&stream->wq_stopped);
return;
}
if (lastline != stream->pixm.height ||
!(cif_frmst & CIF_F0_READY)) {
/* Clearing status must be complete before fe packet
* arrives while cif is connected with mipi,
* so it should be placed before printing log here,
* otherwise it would be delayed.
* At the same time, don't clear the frame id
* for switching address.
*/
rkcif_write_register(cif_dev, CIF_REG_DVP_FRAME_STATUS,
FRM0_STAT_CLS);
v4l2_err(&cif_dev->v4l2_dev,
"Bad frame, irq:0x%x frmst:0x%x size:%dx%d\n",
intstat, cif_frmst, lastline, lastpix);
return;
}
if (frmid % 2 != 0) {
stream->frame_phase = CIF_CSI_FRAME0_READY;
if (stream->curr_buf)
vb_done = &stream->curr_buf->vb;
} else {
stream->frame_phase = CIF_CSI_FRAME1_READY;
if (stream->next_buf)
vb_done = &stream->next_buf->vb;
}
/* In one-frame mode:
* 1,must clear status manually by writing 0 to enable
* the next frame end irq;
* 2,do not clear the frame id for switching address.
*/
rkcif_write_register(cif_dev, CIF_REG_DVP_FRAME_STATUS,
cif_frmst & FRM0_STAT_CLS);
ret = rkcif_assign_new_buffer_oneframe(stream,
RKCIF_YUV_ADDR_STATE_UPDATE);
if (vb_done && (!ret)) {
vb_done->sequence = stream->frame_idx;
rkcif_vb_done_oneframe(stream, vb_done);
}
stream->frame_idx++;
cif_dev->irq_stats.all_frm_end_cnt++;
}
}
static int rkcif_csi_g_mipi_id(struct v4l2_device *v4l2_dev,
unsigned int intstat)
{
if (intstat & CSI_FRAME_END_ID0) {
if ((intstat & CSI_FRAME_END_ID0) ==
CSI_FRAME_END_ID0)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in ID0\n");
return RKCIF_STREAM_MIPI_ID0;
}
if (intstat & CSI_FRAME_END_ID1) {
if ((intstat & CSI_FRAME_END_ID1) ==
CSI_FRAME_END_ID1)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in ID1\n");
return RKCIF_STREAM_MIPI_ID1;
}
if (intstat & CSI_FRAME_END_ID2) {
if ((intstat & CSI_FRAME_END_ID2) ==
CSI_FRAME_END_ID2)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in ID2\n");
return RKCIF_STREAM_MIPI_ID2;
}
if (intstat & CSI_FRAME_END_ID3) {
if ((intstat & CSI_FRAME_END_ID3) ==
CSI_FRAME_END_ID3)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in ID3\n");
return RKCIF_STREAM_MIPI_ID3;
}
return -EINVAL;
}
static int rkcif_dvp_g_ch_id(struct v4l2_device *v4l2_dev,
u32 *intstat, u32 frm_stat)
{
if (*intstat & DVP_FRAME_END_ID0) {
if ((frm_stat & DVP_CHANNEL0_FRM_READ) ==
DVP_CHANNEL0_FRM_READ)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in DVP ID0\n");
*intstat &= ~DVP_FRAME_END_ID0;
return RKCIF_STREAM_MIPI_ID0;
}
if (*intstat & DVP_FRAME_END_ID1) {
if ((frm_stat & DVP_CHANNEL1_FRM_READ) ==
DVP_CHANNEL1_FRM_READ)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in DVP ID1\n");
*intstat &= ~DVP_FRAME_END_ID1;
return RKCIF_STREAM_MIPI_ID1;
}
if (*intstat & DVP_FRAME_END_ID2) {
if ((frm_stat & DVP_CHANNEL2_FRM_READ) ==
DVP_CHANNEL2_FRM_READ)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in DVP ID2\n");
*intstat &= ~DVP_FRAME_END_ID2;
return RKCIF_STREAM_MIPI_ID2;
}
if (*intstat & DVP_FRAME_END_ID3) {
if ((frm_stat & DVP_CHANNEL3_FRM_READ) ==
DVP_CHANNEL3_FRM_READ)
v4l2_warn(v4l2_dev, "frame0/1 trigger simultaneously in DVP ID3\n");
*intstat &= ~DVP_FRAME_END_ID3;
return RKCIF_STREAM_MIPI_ID3;
}
return -EINVAL;
}
static bool rkcif_is_csi2_err_trigger_reset(struct rkcif_timer *timer)
{
struct rkcif_device *dev = container_of(timer,
struct rkcif_device,
reset_watchdog_timer);
struct rkcif_stream *stream = &dev->stream[RKCIF_STREAM_MIPI_ID0];
struct rkcif_hw_timer *hw_timer = &dev->hw_dev->hw_timer;
bool is_triggered = false, is_assign_triggered = false, is_first_err = false;
unsigned long flags;
u64 cur_time, diff_time;
spin_lock_irqsave(&timer->csi2_err_lock, flags);
if (timer->csi2_err_cnt_even != 0 &&
timer->csi2_err_cnt_odd != 0) {
timer->csi2_err_cnt_odd = 0;
timer->csi2_err_cnt_even = 0;
hw_timer->reset_src = RKCIF_RESET_SRC_ERR_CSI2;
timer->csi2_err_triggered_cnt++;
if (timer->csi2_err_triggered_cnt == 1) {
is_first_err = true;
timer->csi2_first_err_timestamp = ktime_get_ns();
}
is_assign_triggered = true;
v4l2_info(&dev->v4l2_dev,
"find csi2 err cnt is:%d\n",
timer->csi2_err_triggered_cnt);
}
if (!is_first_err) {
if (timer->csi2_err_triggered_cnt >= 1) {
cur_time = ktime_get_ns();
diff_time = cur_time - timer->csi2_first_err_timestamp;
diff_time = div_u64(diff_time, 1000000);
if (diff_time >= hw_timer->err_time_interval) {
is_triggered = true;
v4l2_info(&dev->v4l2_dev, "trigger reset for time out of csi err\n");
goto end_judge;
}
if (!is_assign_triggered &&
(timer->csi2_err_cnt_odd == 0 ||
timer->csi2_err_cnt_even == 0)) {
is_triggered = true;
v4l2_info(&dev->v4l2_dev, "trigger reset for csi err\n");
goto end_judge;
}
}
}
/*
* when fs cnt is beyond 2, it indicates that frame end is not coming,
* or fs and fe had been not paired.
*/
if (hw_timer->monitor_mode != RKCIF_MONITOR_MODE_HOTPLUG &&
(stream->is_fs_fe_not_paired ||
stream->fs_cnt_in_single_frame > RKCIF_FS_DETECTED_NUM)) {
is_triggered = true;
v4l2_info(&dev->v4l2_dev, "reset for fs & fe not paired\n");
}
if (dev->irq_stats.csi_bwidth_lack_cnt) {
is_triggered = true;
dev->irq_stats.csi_bwidth_lack_cnt = 0;
v4l2_info(&dev->v4l2_dev, "reset for bandwidth lack\n");
}
if (dev->irq_stats.csi_overflow_cnt) {
is_triggered = true;
dev->irq_stats.csi_overflow_cnt = 0;
}
end_judge:
spin_unlock_irqrestore(&timer->csi2_err_lock, flags);
return is_triggered;
}
static s32 rkcif_get_sensor_vblank(struct rkcif_device *dev)
{
struct rkcif_sensor_info *terminal_sensor = &dev->terminal_sensor;
struct v4l2_subdev *sd = terminal_sensor->sd;
struct v4l2_ctrl_handler *hdl = sd->ctrl_handler;
struct v4l2_ctrl *ctrl = NULL;
if (!list_empty(&hdl->ctrls)) {
list_for_each_entry(ctrl, &hdl->ctrls, node) {
if (ctrl->id == V4L2_CID_VBLANK)
return ctrl->val;
}
}
return 0;
}
static s32 rkcif_get_sensor_vblank_def(struct rkcif_device *dev)
{
struct rkcif_sensor_info *terminal_sensor = &dev->terminal_sensor;
struct v4l2_subdev *sd = terminal_sensor->sd;
struct v4l2_ctrl_handler *hdl = sd->ctrl_handler;
struct v4l2_ctrl *ctrl = NULL;
if (!list_empty(&hdl->ctrls)) {
list_for_each_entry(ctrl, &hdl->ctrls, node) {
if (ctrl->id == V4L2_CID_VBLANK)
return ctrl->default_value;
}
}
return 0;
}
static void rkcif_cal_csi_crop_width_vwidth(struct rkcif_stream *stream,
u32 raw_width, u32 *crop_width,
u32 *crop_vwidth)
{
struct rkcif_device *dev = stream->cifdev;
struct csi_channel_info *channel = &dev->channels[stream->id];
const struct cif_output_fmt *fmt;
u32 fourcc;
fmt = find_output_fmt(stream, stream->pixm.pixelformat);
if (!fmt) {
v4l2_err(&dev->v4l2_dev, "can not find output format: 0x%x",
stream->pixm.pixelformat);
return;
}
*crop_width = raw_width;
/*
* for mipi or lvds, when enable compact, the virtual width of raw10/raw12
* needs aligned with :ALIGN(bits_per_pixel * width / 8, 8), if enable 16bit mode
* needs aligned with :ALIGN(bits_per_pixel * width * 2, 8), to optimize reading and
* writing of ddr, aliged with 256
*/
if (fmt->fmt_type == CIF_FMT_TYPE_RAW && stream->is_compact &&
fmt->csi_fmt_val != CSI_WRDDR_TYPE_RGB888) {
*crop_vwidth = ALIGN(raw_width * fmt->raw_bpp / 8, 256);
} else {
*crop_vwidth = ALIGN(raw_width * fmt->bpp[0] / 8, 8);
}
if (channel->fmt_val == CSI_WRDDR_TYPE_RGB888)
*crop_width = raw_width * fmt->bpp[0] / 8;
/*
* rk cif don't support output yuyv fmt data
* if user request yuyv fmt, the input mode must be RAW8
* and the width is double Because the real input fmt is
* yuyv
*/
fourcc = stream->cif_fmt_out->fourcc;
if (fourcc == V4L2_PIX_FMT_YUYV || fourcc == V4L2_PIX_FMT_YVYU ||
fourcc == V4L2_PIX_FMT_UYVY || fourcc == V4L2_PIX_FMT_VYUY) {
*crop_width = 2 * raw_width;
*crop_vwidth *= 2;
}
}
static void rkcif_dynamic_crop(struct rkcif_stream *stream)
{
struct rkcif_device *cif_dev = stream->cifdev;
struct v4l2_mbus_config *mbus;
const struct cif_output_fmt *fmt;
u32 raw_width, crop_width = 64, crop_vwidth = 64,
crop_height = 64, crop_x = 0, crop_y = 0;
if (!cif_dev->active_sensor)
return;
mbus = &cif_dev->active_sensor->mbus;
if (mbus->type == V4L2_MBUS_CSI2 ||
mbus->type == V4L2_MBUS_CCP2) {
struct csi_channel_info *channel = &cif_dev->channels[stream->id];
if (channel->fmt_val == CSI_WRDDR_TYPE_RGB888)
crop_x = 3 * stream->crop[CROP_SRC_ACT].left;
else
crop_x = stream->crop[CROP_SRC_ACT].left;
crop_y = stream->crop[CROP_SRC_ACT].top;
raw_width = stream->crop[CROP_SRC_ACT].width;
crop_height = stream->crop[CROP_SRC_ACT].height;
rkcif_cal_csi_crop_width_vwidth(stream,
raw_width,
&crop_width, &crop_vwidth);
rkcif_write_register(cif_dev,
get_reg_index_of_id_crop_start(channel->id),
crop_y << 16 | crop_x);
rkcif_write_register(cif_dev, get_reg_index_of_id_ctrl1(channel->id),
crop_height << 16 | crop_width);
rkcif_write_register(cif_dev,
get_reg_index_of_frm0_y_vlw(channel->id),
crop_vwidth);
rkcif_write_register(cif_dev,
get_reg_index_of_frm1_y_vlw(channel->id),
crop_vwidth);
rkcif_write_register(cif_dev,
get_reg_index_of_frm0_uv_vlw(channel->id),
crop_vwidth);
rkcif_write_register(cif_dev,
get_reg_index_of_frm1_uv_vlw(channel->id),
crop_vwidth);
} else {
raw_width = stream->crop[CROP_SRC_ACT].width;
crop_width = raw_width;
crop_vwidth = raw_width;
crop_height = stream->crop[CROP_SRC_ACT].height;
crop_x = stream->crop[CROP_SRC_ACT].left;
crop_y = stream->crop[CROP_SRC_ACT].top;
rkcif_write_register(cif_dev, CIF_REG_DVP_CROP,
crop_y << CIF_CROP_Y_SHIFT | crop_x);
if (stream->cif_fmt_in->fmt_type == CIF_FMT_TYPE_RAW) {
fmt = find_output_fmt(stream, stream->pixm.pixelformat);
if (fmt->fourcc == V4L2_PIX_FMT_GREY ||
fmt->fourcc == V4L2_PIX_FMT_SRGGB8 ||
fmt->fourcc == V4L2_PIX_FMT_SGRBG8 ||
fmt->fourcc == V4L2_PIX_FMT_SGBRG8 ||
fmt->fourcc == V4L2_PIX_FMT_SBGGR8)
crop_vwidth = ALIGN(raw_width * fmt->raw_bpp / 8, 256);
else
crop_vwidth = raw_width * rkcif_cal_raw_vir_line_ratio(stream, fmt);
}
rkcif_write_register(cif_dev, CIF_REG_DVP_VIR_LINE_WIDTH, crop_vwidth);
rkcif_write_register(cif_dev, CIF_REG_DVP_SET_SIZE,
crop_height << 16 | crop_width);
}
stream->crop_dyn_en = false;
}
void rkcif_monitor_reset_event(struct rkcif_hw *hw)
{
struct rkcif_hw_timer *hw_timer = &hw->hw_timer;
struct rkcif_timer *timer = NULL;
struct rkcif_device *cif_dev = NULL;
struct rkcif_stream *stream = NULL;
unsigned long flags;
int i = 0, j = 0;
if (hw_timer->is_running)
return;
if (hw_timer->monitor_mode == RKCIF_MONITOR_MODE_IDLE)
return;
spin_lock_irqsave(&hw_timer->timer_lock, flags);
hw_timer->is_running = true;
for (j = 0; i < hw->dev_num; j++) {
cif_dev = hw->cif_dev[i];
timer = &cif_dev->reset_watchdog_timer;
for (i = 0; i < cif_dev->num_channels; i++) {
stream = &cif_dev->stream[i];
if (stream->state == RKCIF_STATE_STREAMING)
timer->last_buf_wakeup_cnt[i] = stream->frame_idx;
}
}
hw_timer->cycle_jif = msecs_to_jiffies(hw_timer->monitor_cycle);
hw_timer->timer.expires = jiffies + hw_timer->cycle_jif;
mod_timer(&hw_timer->timer, hw_timer->timer.expires);
spin_unlock_irqrestore(&hw_timer->timer_lock, flags);
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev,
"start monitor timer, monitor cycle %d\n",
hw_timer->monitor_cycle);
}
static void rkcif_rdbk_frame_end(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *sensor = &stream->cifdev->terminal_sensor;
u32 denominator, numerator;
u64 l_ts, m_ts, s_ts, time = 30000000LL;
int ret, fps = -1;
if (dev->hdr.mode == HDR_X2) {
if (stream->id != RKCIF_STREAM_MIPI_ID1 ||
dev->stream[RKCIF_STREAM_MIPI_ID0].state != RKCIF_STATE_STREAMING ||
dev->stream[RKCIF_STREAM_MIPI_ID1].state != RKCIF_STATE_STREAMING)
return;
} else if (dev->hdr.mode == HDR_X3) {
if (stream->id != RKCIF_STREAM_MIPI_ID2 ||
dev->stream[RKCIF_STREAM_MIPI_ID0].state != RKCIF_STATE_STREAMING ||
dev->stream[RKCIF_STREAM_MIPI_ID1].state != RKCIF_STATE_STREAMING ||
dev->stream[RKCIF_STREAM_MIPI_ID2].state != RKCIF_STATE_STREAMING)
return;
}
numerator = sensor->fi.interval.numerator;
denominator = sensor->fi.interval.denominator;
if (denominator && numerator)
time = numerator * 1000 / denominator * 1000 * 1000;
if (dev->hdr.mode == HDR_X3) {
if (dev->rdbk_buf[RDBK_L] &&
dev->rdbk_buf[RDBK_M] &&
dev->rdbk_buf[RDBK_S]) {
l_ts = dev->rdbk_buf[RDBK_L]->vb.vb2_buf.timestamp;
m_ts = dev->rdbk_buf[RDBK_M]->vb.vb2_buf.timestamp;
s_ts = dev->rdbk_buf[RDBK_S]->vb.vb2_buf.timestamp;
if (m_ts < l_ts || s_ts < m_ts) {
v4l2_err(&dev->v4l2_dev,
"s/m/l frame err, timestamp s:%lld m:%lld l:%lld\n",
s_ts, m_ts, l_ts);
goto RDBK_FRM_UNMATCH;
}
if ((m_ts - l_ts) > time || (s_ts - m_ts) > time) {
ret = v4l2_subdev_call(sensor->sd,
video,
g_frame_interval,
&sensor->fi);
if (!ret) {
denominator = sensor->fi.interval.denominator;
numerator = sensor->fi.interval.numerator;
if (denominator && numerator) {
time = numerator * 1000 / denominator * 1000 * 1000;
fps = denominator / numerator;
}
}
if ((m_ts - l_ts) > time || (s_ts - m_ts) > time) {
v4l2_err(&dev->v4l2_dev,
"timestamp no match, s:%lld m:%lld l:%lld, fps:%d\n",
s_ts, m_ts, l_ts, fps);
goto RDBK_FRM_UNMATCH;
}
}
dev->rdbk_buf[RDBK_L]->vb.sequence = dev->rdbk_buf[RDBK_S]->vb.sequence;
dev->rdbk_buf[RDBK_M]->vb.sequence = dev->rdbk_buf[RDBK_S]->vb.sequence;
rkcif_vb_done_oneframe(&dev->stream[RKCIF_STREAM_MIPI_ID0],
&dev->rdbk_buf[RDBK_L]->vb);
rkcif_vb_done_oneframe(&dev->stream[RKCIF_STREAM_MIPI_ID1],
&dev->rdbk_buf[RDBK_M]->vb);
rkcif_vb_done_oneframe(&dev->stream[RKCIF_STREAM_MIPI_ID2],
&dev->rdbk_buf[RDBK_S]->vb);
} else {
if (!dev->rdbk_buf[RDBK_L])
v4l2_err(&dev->v4l2_dev, "lost long frames\n");
if (!dev->rdbk_buf[RDBK_M])
v4l2_err(&dev->v4l2_dev, "lost medium frames\n");
if (!dev->rdbk_buf[RDBK_S])
v4l2_err(&dev->v4l2_dev, "lost short frames\n");
goto RDBK_FRM_UNMATCH;
}
} else if (dev->hdr.mode == HDR_X2) {
if (dev->rdbk_buf[RDBK_L] && dev->rdbk_buf[RDBK_M]) {
l_ts = dev->rdbk_buf[RDBK_L]->vb.vb2_buf.timestamp;
s_ts = dev->rdbk_buf[RDBK_M]->vb.vb2_buf.timestamp;
if (s_ts < l_ts) {
v4l2_err(&dev->v4l2_dev,
"s/l frame err, timestamp s:%lld l:%lld\n",
s_ts, l_ts);
goto RDBK_FRM_UNMATCH;
}
if ((s_ts - l_ts) > time) {
ret = v4l2_subdev_call(sensor->sd,
video,
g_frame_interval,
&sensor->fi);
if (!ret) {
denominator = sensor->fi.interval.denominator;
numerator = sensor->fi.interval.numerator;
if (denominator && numerator) {
time = numerator * 1000 / denominator * 1000 * 1000;
fps = denominator / numerator;
}
}
if ((s_ts - l_ts) > time) {
v4l2_err(&dev->v4l2_dev,
"timestamp no match, s:%lld l:%lld, fps:%d\n",
s_ts, l_ts, fps);
goto RDBK_FRM_UNMATCH;
}
}
dev->rdbk_buf[RDBK_L]->vb.sequence = dev->rdbk_buf[RDBK_M]->vb.sequence;
rkcif_vb_done_oneframe(&dev->stream[RKCIF_STREAM_MIPI_ID0],
&dev->rdbk_buf[RDBK_L]->vb);
rkcif_vb_done_oneframe(&dev->stream[RKCIF_STREAM_MIPI_ID1],
&dev->rdbk_buf[RDBK_M]->vb);
} else {
if (!dev->rdbk_buf[RDBK_L])
v4l2_err(&dev->v4l2_dev, "lost long frames\n");
if (!dev->rdbk_buf[RDBK_M])
v4l2_err(&dev->v4l2_dev, "lost short frames\n");
goto RDBK_FRM_UNMATCH;
}
} else {
rkcif_vb_done_oneframe(stream, &dev->rdbk_buf[RDBK_S]->vb);
}
dev->rdbk_buf[RDBK_L] = NULL;
dev->rdbk_buf[RDBK_M] = NULL;
dev->rdbk_buf[RDBK_S] = NULL;
return;
RDBK_FRM_UNMATCH:
if (dev->rdbk_buf[RDBK_L]) {
dev->rdbk_buf[RDBK_L]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&dev->rdbk_buf[RDBK_L]->vb.vb2_buf);
}
if (dev->rdbk_buf[RDBK_M]) {
dev->rdbk_buf[RDBK_M]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&dev->rdbk_buf[RDBK_M]->vb.vb2_buf);
}
if (dev->rdbk_buf[RDBK_S]) {
dev->rdbk_buf[RDBK_S]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&dev->rdbk_buf[RDBK_S]->vb.vb2_buf);
}
dev->rdbk_buf[RDBK_L] = NULL;
dev->rdbk_buf[RDBK_M] = NULL;
dev->rdbk_buf[RDBK_S] = NULL;
}
static void rkcif_buf_done_prepare(struct rkcif_stream *stream,
struct rkcif_buffer *active_buf,
int mipi_id,
u32 mode)
{
unsigned long flags;
struct vb2_v4l2_buffer *vb_done = NULL;
struct rkcif_device *cif_dev = stream->cifdev;
if (active_buf) {
vb_done = &active_buf->vb;
vb_done->vb2_buf.timestamp = ktime_get_ns();
vb_done->sequence = stream->frame_idx;
if (stream->is_line_wake_up) {
spin_lock_irqsave(&stream->fps_lock, flags);
if (mode)
stream->fps_stats.frm0_timestamp = vb_done->vb2_buf.timestamp;
else
stream->fps_stats.frm1_timestamp = vb_done->vb2_buf.timestamp;
stream->readout.wk_timestamp = vb_done->vb2_buf.timestamp;
spin_unlock_irqrestore(&stream->fps_lock, flags);
}
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED)
vb_done->sequence /= 2;
}
if (cif_dev->hdr.mode == NO_HDR) {
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
if (stream->frame_phase == CIF_CSI_FRAME1_READY && active_buf)
rkcif_vb_done_oneframe(stream, vb_done);
} else {
if (active_buf)
rkcif_vb_done_oneframe(stream, vb_done);
}
} else {
if (cif_dev->is_start_hdr) {
spin_lock_irqsave(&cif_dev->hdr_lock, flags);
if (mipi_id == RKCIF_STREAM_MIPI_ID0) {
if (cif_dev->rdbk_buf[RDBK_L]) {
v4l2_err(&cif_dev->v4l2_dev,
"multiple long data in %s frame,frm_idx:%d,state:0x%x\n",
cif_dev->hdr.mode == HDR_X2 ? "hdr_x2" : "hdr_x3",
stream->frame_idx,
cif_dev->rdbk_buf[RDBK_L]->vb.vb2_buf.state);
cif_dev->rdbk_buf[RDBK_L]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&cif_dev->rdbk_buf[RDBK_L]->vb.vb2_buf);
}
if (active_buf)
cif_dev->rdbk_buf[RDBK_L] = active_buf;
} else if (mipi_id == RKCIF_STREAM_MIPI_ID1) {
if (cif_dev->rdbk_buf[RDBK_M]) {
v4l2_err(&cif_dev->v4l2_dev,
"multiple %s frame,frm_idx:%d,state:0x%x\n",
cif_dev->hdr.mode == HDR_X2 ? "short data in hdr_x2" : "medium data in hdr_x3",
stream->frame_idx,
cif_dev->rdbk_buf[RDBK_M]->vb.vb2_buf.state);
cif_dev->rdbk_buf[RDBK_M]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&cif_dev->rdbk_buf[RDBK_M]->vb.vb2_buf);
}
if (active_buf)
cif_dev->rdbk_buf[RDBK_M] = active_buf;
if (cif_dev->hdr.mode == HDR_X2)
rkcif_rdbk_frame_end(stream);
} else if (mipi_id == RKCIF_STREAM_MIPI_ID2) {
if (cif_dev->rdbk_buf[RDBK_S]) {
v4l2_err(&cif_dev->v4l2_dev,
"multiple %s frame, frm_idx:%d,state:0x%x\n",
cif_dev->hdr.mode == HDR_X2 ? "err short data in hdr_x3" : "short data in hdr_x3",
stream->frame_idx,
cif_dev->rdbk_buf[RDBK_S]->vb.vb2_buf.state);
cif_dev->rdbk_buf[RDBK_S]->vb.vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&cif_dev->rdbk_buf[RDBK_S]->vb.vb2_buf);
}
if (active_buf)
cif_dev->rdbk_buf[RDBK_S] = active_buf;
if (cif_dev->hdr.mode == HDR_X3)
rkcif_rdbk_frame_end(stream);
}
spin_unlock_irqrestore(&cif_dev->hdr_lock, flags);
} else {
if (active_buf) {
vb_done->vb2_buf.state = VB2_BUF_STATE_ACTIVE;
rkcif_buf_queue(&vb_done->vb2_buf);
}
v4l2_info(&cif_dev->v4l2_dev,
"warning:hdr runs stream[%d], stream[0]:%s stream[1]:%s stream[2]:%s stream[3]:%s\n",
stream->id,
cif_dev->stream[0].state != RKCIF_STATE_STREAMING ? "stopped" : "running",
cif_dev->stream[1].state != RKCIF_STATE_STREAMING ? "stopped" : "running",
cif_dev->stream[2].state != RKCIF_STATE_STREAMING ? "stopped" : "running",
cif_dev->stream[3].state != RKCIF_STATE_STREAMING ? "stopped" : "running");
}
}
}
static void rkcif_line_wake_up(struct rkcif_stream *stream, int mipi_id)
{
u32 mode;
struct rkcif_buffer *active_buf = NULL;
int ret = 0;
mode = stream->line_int_cnt % 2;
if (mode) {
if (stream->curr_buf)
active_buf = stream->curr_buf;
} else {
if (stream->next_buf)
active_buf = stream->next_buf;
}
if (stream->stopping) {
stream->is_can_stop = true;
return;
}
ret = rkcif_get_new_buffer_wake_up_mode(stream);
if (ret)
goto end_wake_up;
rkcif_buf_done_prepare(stream, active_buf, mipi_id, mode);
end_wake_up:
stream->frame_idx++;
}
static void rkcif_deal_readout_time(struct rkcif_stream *stream)
{
struct rkcif_device *cif_dev = stream->cifdev;
struct rkcif_stream *detect_stream = &cif_dev->stream[0];
unsigned long flags;
spin_lock_irqsave(&stream->fps_lock, flags);
stream->readout.fe_timestamp = ktime_get_ns();
if (stream->id == RKCIF_STREAM_MIPI_ID0)
detect_stream->readout.readout_time = stream->readout.fe_timestamp - stream->readout.fs_timestamp;
if ((cif_dev->hdr.mode == NO_HDR) && (stream->id == RKCIF_STREAM_MIPI_ID0)) {
detect_stream->readout.early_time = stream->readout.fe_timestamp - stream->readout.wk_timestamp;
} else if ((cif_dev->hdr.mode == HDR_X2) && (stream->id == RKCIF_STREAM_MIPI_ID1)) {
detect_stream->readout.early_time = stream->readout.fe_timestamp - stream->readout.wk_timestamp;
detect_stream->readout.total_time = stream->readout.fe_timestamp - detect_stream->readout.fe_timestamp;
detect_stream->readout.total_time += detect_stream->readout.readout_time;
} else if ((cif_dev->hdr.mode == HDR_X3) && (stream->id == RKCIF_STREAM_MIPI_ID2)) {
detect_stream->readout.early_time = stream->readout.fe_timestamp - stream->readout.wk_timestamp;
detect_stream->readout.total_time = stream->readout.fe_timestamp - detect_stream->readout.fe_timestamp;
detect_stream->readout.total_time += detect_stream->readout.readout_time;
}
if (!stream->is_line_wake_up)
detect_stream->readout.early_time = 0;
spin_unlock_irqrestore(&stream->fps_lock, flags);
}
static void rkcif_update_stream(struct rkcif_device *cif_dev,
struct rkcif_stream *stream,
int mipi_id)
{
struct rkcif_buffer *active_buf = NULL;
unsigned long flags;
int ret = 0;
if (stream->frame_phase == (CIF_CSI_FRAME0_READY | CIF_CSI_FRAME1_READY)) {
v4l2_err(&cif_dev->v4l2_dev, "stream[%d], frm0/frm1 end simultaneously,frm id:%d\n",
stream->id, stream->frame_idx);
stream->frame_idx++;
return;
}
if (!stream->is_line_wake_up) {
spin_lock_irqsave(&stream->fps_lock, flags);
if (stream->frame_phase & CIF_CSI_FRAME0_READY) {
if (stream->curr_buf)
active_buf = stream->curr_buf;
stream->fps_stats.frm0_timestamp = ktime_get_ns();
} else if (stream->frame_phase & CIF_CSI_FRAME1_READY) {
if (stream->next_buf)
active_buf = stream->next_buf;
stream->fps_stats.frm1_timestamp = ktime_get_ns();
}
spin_unlock_irqrestore(&stream->fps_lock, flags);
}
if (cif_dev->inf_id == RKCIF_MIPI_LVDS)
rkcif_deal_readout_time(stream);
if (cif_dev->chip_id == CHIP_RV1126_CIF ||
cif_dev->chip_id == CHIP_RV1126_CIF_LITE ||
cif_dev->chip_id == CHIP_RK3568_CIF)
rkcif_luma_isr(&cif_dev->luma_vdev, mipi_id, stream->frame_idx);
if (!stream->is_line_wake_up) {
ret = rkcif_assign_new_buffer_pingpong(stream,
RKCIF_YUV_ADDR_STATE_UPDATE,
mipi_id);
if (ret)
goto end;
} else {
ret = rkcif_update_new_buffer_wake_up_mode(stream);
if (ret)
return;
}
if (!stream->is_line_wake_up)
rkcif_buf_done_prepare(stream, active_buf, mipi_id, 0);
end:
if (!stream->is_line_wake_up)
stream->frame_idx++;
}
u32 rkcif_get_sof(struct rkcif_device *cif_dev)
{
u32 val = 0x0;
struct rkcif_sensor_info *sensor = cif_dev->active_sensor;
if (sensor->mbus.type == V4L2_MBUS_CSI2)
val = rkcif_csi2_get_sof();
else if (sensor->mbus.type == V4L2_MBUS_CCP2)
val = rkcif_lvds_get_sof(cif_dev);
else if (sensor->mbus.type == V4L2_MBUS_PARALLEL ||
sensor->mbus.type == V4L2_MBUS_BT656)
val = rkcif_dvp_get_sof(cif_dev);
return val;
}
static void rkcif_set_sof(struct rkcif_device *cif_dev, u32 seq)
{
struct rkcif_sensor_info *sensor = cif_dev->active_sensor;
if (sensor->mbus.type == V4L2_MBUS_CSI2)
rkcif_csi2_set_sof(seq);
else if (sensor->mbus.type == V4L2_MBUS_CCP2)
rkcif_lvds_set_sof(cif_dev, seq);
else if (sensor->mbus.type == V4L2_MBUS_PARALLEL ||
sensor->mbus.type == V4L2_MBUS_BT656)
rkcif_dvp_set_sof(cif_dev, seq);
}
static int rkcif_streamoff_in_reset(struct rkcif_device *cif_dev,
struct rkcif_stream *resume_stream[],
struct rkcif_resume_info *resume_info,
enum rkmodule_reset_src reset_src)
{
struct rkcif_stream *stream = NULL;
struct rkcif_pipeline *p = &cif_dev->pipe;
struct rkcif_sensor_info *terminal_sensor = &cif_dev->terminal_sensor;
u32 on, sof_cnt;
int i, j, ret = 0;
int stream_off_cnt = 0;
for (i = 0, j = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
stream = &cif_dev->stream[i];
if (stream->state == RKCIF_STATE_STREAMING) {
stream_off_cnt++;
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev,
"stream[%d] stopping\n", stream->id);
rkcif_stream_stop(stream);
atomic_dec(&p->stream_cnt);
if (stream->id == RKCIF_STREAM_MIPI_ID0) {
sof_cnt = rkcif_get_sof(cif_dev);
v4l2_err(&cif_dev->v4l2_dev,
"%s: stream[%d] sync frmid & csi_sof, frm_id:%d, csi_sof:%d\n",
__func__,
stream->id,
stream->frame_idx,
sof_cnt);
resume_info->frm_sync_seq = stream->frame_idx;
}
stream->state = RKCIF_STATE_RESET_IN_STREAMING;
stream->is_fs_fe_not_paired = false;
stream->fs_cnt_in_single_frame = 0;
resume_stream[j] = stream;
j += 1;
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev,
"%s stop stream[%d] in streaming, frm_id:%d, csi_sof:%d\n",
__func__, stream->id, stream->frame_idx, rkcif_csi2_get_sof());
}
}
if (!stream_off_cnt)
return 0;
on = 0;
for (i = 0; i < p->num_subdevs; i++) {
if (p->subdevs[i] == terminal_sensor->sd) {
if (reset_src == RKCIF_RESET_SRC_ERR_CSI2 ||
reset_src == RKCIF_RESET_SRC_ERR_HOTPLUG ||
reset_src == RKICF_RESET_SRC_ERR_CUTOFF) {
ret = v4l2_subdev_call(p->subdevs[i], core, ioctl,
RKMODULE_SET_QUICK_STREAM, &on);
if (ret)
v4l2_err(&cif_dev->v4l2_dev, "quick stream off subdev:%s failed\n",
p->subdevs[i]->name);
}
}
if (ret)
v4l2_err(&cif_dev->v4l2_dev, "%s:stream %s subdev:%s failed\n",
__func__, on ? "on" : "off", p->subdevs[i]->name);
}
return ret;
}
static int rkcif_streamon_in_reset(struct rkcif_device *cif_dev,
struct rkcif_stream *resume_stream[],
struct rkcif_resume_info *resume_info,
enum rkmodule_reset_src reset_src)
{
struct rkcif_timer *timer = &cif_dev->reset_watchdog_timer;
struct rkcif_stream *stream = NULL;
struct rkcif_pipeline *p = &cif_dev->pipe;
struct rkcif_sensor_info *terminal_sensor = &cif_dev->terminal_sensor;
int i = 0;
int ret = 0;
int on = 0;
int stream_on_cnt = 0;
for (i = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
stream = resume_stream[i];
if (stream == NULL || stream->state != RKCIF_STATE_RESET_IN_STREAMING)
break;
stream_on_cnt++;
stream->fs_cnt_in_single_frame = 0;
if (stream->cif_fmt_in->field == V4L2_FIELD_INTERLACED) {
if (stream->curr_buf == stream->next_buf) {
if (stream->curr_buf)
list_add_tail(&stream->curr_buf->queue, &stream->buf_head);
} else {
if (stream->curr_buf)
list_add_tail(&stream->curr_buf->queue, &stream->buf_head);
if (stream->next_buf)
list_add_tail(&stream->next_buf->queue, &stream->buf_head);
}
stream->curr_buf = NULL;
stream->next_buf = NULL;
}
if (cif_dev->active_sensor->mbus.type == V4L2_MBUS_CSI2 ||
cif_dev->active_sensor->mbus.type == V4L2_MBUS_CCP2)
ret = rkcif_csi_stream_start(stream);
else
ret = rkcif_stream_start(stream);
if (ret) {
v4l2_err(&cif_dev->v4l2_dev, "%s:resume stream[%d] failed\n",
__func__, stream->id);
goto unlock_stream;
}
atomic_inc(&p->stream_cnt);
stream->streamon_timestamp = ktime_get_ns();
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev,
"resume stream[%d], frm_idx:%d, csi_sof:%d\n",
stream->id, stream->frame_idx,
rkcif_get_sof(cif_dev));
}
if (!stream_on_cnt)
return 0;
on = 1;
for (i = 0; i < p->num_subdevs; i++) {
if (p->subdevs[i] == terminal_sensor->sd) {
rkcif_set_sof(cif_dev, resume_info->frm_sync_seq);
if (reset_src == RKCIF_RESET_SRC_ERR_CSI2 ||
reset_src == RKCIF_RESET_SRC_ERR_HOTPLUG ||
reset_src == RKICF_RESET_SRC_ERR_CUTOFF) {
ret = v4l2_subdev_call(p->subdevs[i], core, ioctl,
RKMODULE_SET_QUICK_STREAM, &on);
if (ret)
v4l2_err(&cif_dev->v4l2_dev,
"quick stream on subdev:%s failed\n",
p->subdevs[i]->name);
}
}
if (ret)
v4l2_err(&cif_dev->v4l2_dev, "reset subdev:%s failed\n",
p->subdevs[i]->name);
}
rkcif_start_luma(&cif_dev->luma_vdev, resume_stream[0]->cif_fmt_in);
timer->csi2_err_triggered_cnt = 0;
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev, "do rkcif reset successfully!\n");
return 0;
unlock_stream:
return ret;
}
static int rkcif_do_reset_work(struct rkcif_device *cif_dev,
enum rkmodule_reset_src reset_src)
{
struct rkcif_stream *resume_stream[RKCIF_MAX_DEV][RKCIF_MAX_STREAM_MIPI] = {0};
struct rkcif_resume_info *resume_info[RKCIF_MAX_DEV];
struct rkcif_hw *hw = cif_dev->hw_dev;
struct rkcif_device *cifdev = NULL;
int i = 0;
int ret = 0;
v4l2_info(&cif_dev->v4l2_dev, "do rkcif reset\n");
mutex_lock(&cif_dev->hw_dev->dev_lock);
if (hw->reset_work_cancel) {
mutex_unlock(&hw->dev_lock);
return 0;
}
for (i = 0; i < hw->dev_num; i++) {
cifdev = hw->cif_dev[i];
resume_info[i] = &cifdev->reset_work.resume_info;
ret |= rkcif_streamoff_in_reset(cifdev,
resume_stream[i],
resume_info[i],
reset_src);
}
rockchip_clear_system_status(SYS_STATUS_CIF0);
rkcif_do_cru_reset(cif_dev);
udelay(30);
for (i = 0; i < hw->dev_num; i++) {
cifdev = hw->cif_dev[i];
resume_info[i] = &cifdev->reset_work.resume_info;
ret |= rkcif_streamon_in_reset(cifdev,
resume_stream[i],
resume_info[i],
reset_src);
}
rockchip_set_system_status(SYS_STATUS_CIF0);
hw->hw_timer.is_running = false;
rkcif_monitor_reset_event(cif_dev->hw_dev);
v4l2_info(&cif_dev->v4l2_dev, "do rkcif reset successfully!\n");
mutex_unlock(&hw->dev_lock);
return ret;
}
void rkcif_reset_work(struct work_struct *work)
{
struct rkcif_work_struct *reset_work = container_of(work,
struct rkcif_work_struct,
work);
struct rkcif_device *dev = container_of(reset_work,
struct rkcif_device,
reset_work);
int ret;
ret = rkcif_do_reset_work(dev, reset_work->reset_src);
if (ret)
v4l2_info(&dev->v4l2_dev, "do reset work failed!\n");
}
static bool rkcif_is_stream_stop_output(struct rkcif_stream *stream)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_hw_timer *hw_timer = &dev->hw_dev->hw_timer;
struct rkcif_stream *tmp_stream = NULL;
struct v4l2_rect *raw_rect = &dev->terminal_sensor.raw_rect;
u64 fps, diff_time;
unsigned int i;
s64 vblank_def = 0;
s32 vblank = 0;
u64 numerator = 0;
u64 denominator = 0;
u64 cur_timestamp = 0;
if (dev->hdr.mode == HDR_X3) {
for (i = 0; i < 3; i++) {
tmp_stream = &dev->stream[i];
if (tmp_stream->state != RKCIF_STATE_STREAMING)
return false;
}
} else if (dev->hdr.mode == HDR_X2) {
for (i = 0; i < 2; i++) {
tmp_stream = &dev->stream[i];
if (tmp_stream->state != RKCIF_STATE_STREAMING)
return false;
}
}
vblank_def = rkcif_get_sensor_vblank_def(dev);
vblank = rkcif_get_sensor_vblank(dev);
numerator = dev->terminal_sensor.fi.interval.numerator;
denominator = dev->terminal_sensor.fi.interval.denominator;
fps = div_u64(1000 * numerator, denominator);
fps *= (raw_rect->height + vblank);
fps = div_u64((raw_rect->height + vblank_def), fps);
if (fps > hw_timer->monitor_cycle) {
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev, "camera work in long expsure, not to check stream loss\n");
return false;
}
cur_timestamp = ktime_get_ns();
diff_time = cur_timestamp - stream->streamon_timestamp;
diff_time = div_u64(diff_time, 1000000);
if (diff_time > hw_timer->monitor_cycle + 10)
return true;
return false;
}
static void rkcif_init_reset_work(struct rkcif_hw_timer *hw_timer)
{
struct rkcif_hw *hw = container_of(hw_timer,
struct rkcif_hw,
hw_timer);
struct rkcif_device *dev = NULL;
struct rkcif_stream *stream = NULL;
struct rkcif_timer *timer;
unsigned long flags;
int i = 0, j = 0;
v4l2_info(&dev->v4l2_dev,
"do reset work schedule, run_cnt:%d, reset source:%d\n",
hw_timer->run_cnt, hw_timer->reset_src);
for (j = 0; j < hw->dev_num; j++) {
dev = hw->cif_dev[j];
timer = &dev->reset_watchdog_timer;
spin_lock_irqsave(&timer->csi2_err_lock, flags);
timer->is_triggered = false;
timer->csi2_err_cnt_odd = 0;
timer->csi2_err_cnt_even = 0;
timer->csi2_err_fs_fe_cnt = 0;
timer->notifer_called_cnt = 0;
for (i = 0; i < dev->num_channels; i++) {
stream = &dev->stream[i];
if (stream->state == RKCIF_STATE_STREAMING)
timer->last_buf_wakeup_cnt[stream->id] = stream->frame_idx;
}
spin_unlock_irqrestore(&timer->csi2_err_lock, flags);
}
if (hw_timer->is_reset_by_user) {
spin_lock_irqsave(&hw->spin_lock, flags);
hw->reset_info.is_need_reset = 1;
hw->reset_info.reset_src = hw_timer->reset_src;
spin_unlock_irqrestore(&hw->spin_lock, flags);
} else {
dev->reset_work.reset_src = hw_timer->reset_src;
if (schedule_work(&dev->reset_work.work)) {
v4l2_info(&dev->v4l2_dev,
"schedule reset work successfully\n");
} else {
v4l2_info(&dev->v4l2_dev,
"schedule reset work failed\n");
}
}
}
static int rkcif_detect_reset_event(struct rkcif_stream *stream,
struct rkcif_timer *timer,
int *check_cnt,
bool *is_mod_timer)
{
struct rkcif_device *dev = stream->cifdev;
struct rkcif_sensor_info *terminal_sensor = &dev->terminal_sensor;
struct rkcif_hw_timer *hw_timer = &dev->hw_dev->hw_timer;
int ret, is_reset = 0;
struct rkmodule_vicap_reset_info rst_info;
v4l2_dbg(3, rkcif_debug, &dev->v4l2_dev,
"info: frame end still update(%d, %d), detect cnt: %d, mode:%d check_cnt:%d\n",
timer->last_buf_wakeup_cnt[stream->id], stream->frame_idx,
hw_timer->run_cnt, hw_timer->monitor_mode, *check_cnt);
if (timer->last_buf_wakeup_cnt[stream->id] < stream->frame_idx) {
*check_cnt += 1;
v4l2_dbg(1, rkcif_debug, &dev->v4l2_dev,
"info: frame end still update(%d, %d), detect cnt: %d, mode:%d\n",
timer->last_buf_wakeup_cnt[stream->id], stream->frame_idx,
hw_timer->run_cnt, hw_timer->monitor_mode);
timer->last_buf_wakeup_cnt[stream->id] = stream->frame_idx;
if (hw_timer->monitor_mode == RKCIF_MONITOR_MODE_HOTPLUG) {
ret = v4l2_subdev_call(terminal_sensor->sd,
core, ioctl,
RKMODULE_GET_VICAP_RST_INFO,
&rst_info);
if (ret)
is_reset = 0;
else
is_reset = rst_info.is_reset;
rst_info.is_reset = 0;
hw_timer->reset_src = RKCIF_RESET_SRC_ERR_HOTPLUG;
v4l2_subdev_call(terminal_sensor->sd, core, ioctl,
RKMODULE_SET_VICAP_RST_INFO, &rst_info);
if (!is_reset && stream->cifdev->inf_id == RKCIF_MIPI_LVDS) {
hw_timer->reset_src = RKICF_RESET_SRC_ERR_CUTOFF;
is_reset = rkcif_is_csi2_err_trigger_reset(timer);
}
} else if (hw_timer->monitor_mode == RKCIF_MONITOR_MODE_CONTINUE) {
if (stream->cifdev->inf_id == RKCIF_MIPI_LVDS)
is_reset = rkcif_is_csi2_err_trigger_reset(timer);
} else if (hw_timer->monitor_mode == RKCIF_MONITOR_MODE_TRIGGER) {
if (stream->cifdev->inf_id == RKCIF_MIPI_LVDS) {
is_reset = timer->is_csi2_err_occurred;
if (is_reset)
hw_timer->reset_src = RKCIF_RESET_SRC_ERR_CSI2;
timer->is_csi2_err_occurred = false;
}
}
if (is_reset) {
rkcif_init_reset_work(hw_timer);
return is_reset;
}
*is_mod_timer = true;
} else if (timer->last_buf_wakeup_cnt[stream->id] == stream->frame_idx) {
bool is_loss_stream = false;
*check_cnt += 1;
if (hw_timer->run_cnt > 4)
is_loss_stream = rkcif_is_stream_stop_output(stream);
if (is_loss_stream) {
v4l2_info(&dev->v4l2_dev,
"do reset work due to frame end is stopped, run_cnt:%d\n",
hw_timer->run_cnt);
hw_timer->reset_src = RKICF_RESET_SRC_ERR_CUTOFF;
is_reset = true;
rkcif_init_reset_work(hw_timer);
} else {
*is_mod_timer = true;
v4l2_dbg(3, rkcif_debug, &dev->v4l2_dev, "%s fps is reduced\n", __func__);
}
}
return is_reset;
}
static int rkcif_dvp_err_trigger_reset(struct rkcif_device *dev)
{
int is_reset = 0;
if (dev->irq_stats.dvp_overflow_cnt) {
dev->irq_stats.dvp_overflow_cnt = 0;
is_reset = 1;
}
return is_reset;
}
static int rkcif_detect_reset_event_all_dev(struct rkcif_device *dev,
int *check_cnt,
bool *is_mod_timer)
{
struct rkcif_timer *timer = &dev->reset_watchdog_timer;
struct rkcif_stream *stream = NULL;
int i = 0;
int is_reset = 0;
int check_cnt_local = 0;
for (i = 0; i < dev->num_channels; i++) {
stream = &dev->stream[i];
if (stream->state == RKCIF_STATE_STREAMING) {
is_reset = rkcif_detect_reset_event(stream,
timer,
&check_cnt_local,
is_mod_timer);
if (is_reset)
break;
}
}
if (!is_reset && dev->inf_id == RKCIF_DVP)
is_reset = rkcif_dvp_err_trigger_reset(dev);
if (check_cnt_local)
*check_cnt += 1;
return is_reset;
}
void rkcif_reset_watchdog_timer_handler(struct timer_list *t)
{
struct rkcif_hw_timer *hw_timer = container_of(t, struct rkcif_hw_timer, timer);
struct rkcif_hw *hw = container_of(hw_timer,
struct rkcif_hw,
hw_timer);
struct rkcif_device *dev = NULL;
unsigned long flags;
unsigned int i;
int is_reset = 0;
int check_cnt = 0;
bool is_mod_timer = false;
struct rkmodule_vicap_reset_info rst_info;
for (i = 0; i < hw->dev_num; i++) {
dev = hw->cif_dev[i];
is_reset = rkcif_detect_reset_event_all_dev(dev,
&check_cnt,
&is_mod_timer);
if (is_reset)
break;
}
if (hw_timer->monitor_mode == RKCIF_MONITOR_MODE_HOTPLUG && is_reset) {
for (i = 0; i < hw->dev_num; i++) {
dev = hw->cif_dev[i];
rst_info.is_reset = 0;
if (dev->terminal_sensor.sd)
v4l2_subdev_call(dev->terminal_sensor.sd, core, ioctl,
RKMODULE_SET_VICAP_RST_INFO, &rst_info);
}
}
if (!is_reset && is_mod_timer)
mod_timer(&hw_timer->timer, jiffies + hw_timer->cycle_jif);
hw_timer->run_cnt += 1;
if (!check_cnt && !is_reset) {
spin_lock_irqsave(&hw_timer->timer_lock, flags);
hw_timer->is_running = false;
spin_unlock_irqrestore(&hw_timer->timer_lock, flags);
dev_info(hw->dev,
"all stream is stopped, stop reset detect!\n");
}
}
int rkcif_reset_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct rkcif_device *dev = container_of(nb, struct rkcif_device, reset_notifier);
struct rkcif_timer *timer = &dev->reset_watchdog_timer;
struct rkcif_hw_timer *hw_timer = &dev->hw_dev->hw_timer;
unsigned long flags, val;
if (hw_timer->is_running) {
val = action & CSI2_ERR_COUNT_ALL_MASK;
spin_lock_irqsave(&timer->csi2_err_lock, flags);
if ((val % hw_timer->err_ref_cnt) == 0) {
timer->notifer_called_cnt++;
if ((timer->notifer_called_cnt % 2) == 0)
timer->csi2_err_cnt_even = val;
else
timer->csi2_err_cnt_odd = val;
}
timer->csi2_err_fs_fe_cnt = (action & CSI2_ERR_FSFE_MASK) >> 8;
spin_unlock_irqrestore(&timer->csi2_err_lock, flags);
}
return 0;
}
static void rkcif_modify_line_int(struct rkcif_stream *stream, bool en)
{
struct rkcif_device *cif_dev = stream->cifdev;
if (en) {
if (cif_dev->wait_line_bak != cif_dev->wait_line) {
cif_dev->wait_line_bak = cif_dev->wait_line;
rkcif_write_register(cif_dev, CIF_REG_MIPI_LVDS_LINE_INT_NUM_ID0_1,
cif_dev->wait_line << 16 | cif_dev->wait_line);
rkcif_write_register(cif_dev, CIF_REG_MIPI_LVDS_LINE_INT_NUM_ID2_3,
cif_dev->wait_line << 16 | cif_dev->wait_line);
}
rkcif_write_register_or(cif_dev, CIF_REG_MIPI_LVDS_INTEN,
CSI_LINE_INTEN(stream->id));
} else {
rkcif_write_register_and(cif_dev, CIF_REG_MIPI_LVDS_INTEN,
~(CSI_LINE_INTEN(stream->id)));
}
}
static void rkcif_detect_wake_up_mode_change(struct rkcif_stream *stream)
{
struct rkcif_device *cif_dev = stream->cifdev;
if (cif_dev->wait_line && (!stream->is_line_wake_up)) {
stream->is_line_wake_up = true;
if (stream->frame_phase == CIF_CSI_FRAME0_READY)
stream->line_int_cnt = 1;
else if (stream->frame_phase == CIF_CSI_FRAME1_READY)
stream->line_int_cnt = 0;
} else if ((cif_dev->wait_line == 0) && stream->is_line_wake_up) {
stream->is_line_wake_up = false;
}
if (stream->is_line_wake_up) {
rkcif_modify_line_int(stream, true);
stream->is_line_inten = true;
}
if (cif_dev->hdr.mode == NO_HDR && stream->id == RKCIF_STREAM_MIPI_ID0) {
if (cif_dev->wait_line != cif_dev->wait_line_cache)
cif_dev->wait_line = cif_dev->wait_line_cache;
} else if (cif_dev->hdr.mode == HDR_X2 && stream->id == RKCIF_STREAM_MIPI_ID1) {
if (cif_dev->wait_line != cif_dev->wait_line_cache)
cif_dev->wait_line = cif_dev->wait_line_cache;
} else if (cif_dev->hdr.mode == HDR_X3 && stream->id == RKCIF_STREAM_MIPI_ID2) {
if (cif_dev->wait_line != cif_dev->wait_line_cache)
cif_dev->wait_line = cif_dev->wait_line_cache;
}
}
static u32 rkisp_mbus_pixelcode_to_v4l2(u32 pixelcode)
{
u32 pixelformat;
switch (pixelcode) {
case MEDIA_BUS_FMT_Y8_1X8:
pixelformat = V4L2_PIX_FMT_GREY;
break;
case MEDIA_BUS_FMT_SBGGR8_1X8:
pixelformat = V4L2_PIX_FMT_SBGGR8;
break;
case MEDIA_BUS_FMT_SGBRG8_1X8:
pixelformat = V4L2_PIX_FMT_SGBRG8;
break;
case MEDIA_BUS_FMT_SGRBG8_1X8:
pixelformat = V4L2_PIX_FMT_SGRBG8;
break;
case MEDIA_BUS_FMT_SRGGB8_1X8:
pixelformat = V4L2_PIX_FMT_SRGGB8;
break;
case MEDIA_BUS_FMT_Y10_1X10:
pixelformat = V4L2_PIX_FMT_Y10;
break;
case MEDIA_BUS_FMT_SBGGR10_1X10:
pixelformat = V4L2_PIX_FMT_SBGGR10;
break;
case MEDIA_BUS_FMT_SGBRG10_1X10:
pixelformat = V4L2_PIX_FMT_SGBRG10;
break;
case MEDIA_BUS_FMT_SGRBG10_1X10:
pixelformat = V4L2_PIX_FMT_SGRBG10;
break;
case MEDIA_BUS_FMT_SRGGB10_1X10:
pixelformat = V4L2_PIX_FMT_SRGGB10;
break;
case MEDIA_BUS_FMT_Y12_1X12:
pixelformat = V4L2_PIX_FMT_Y12;
break;
case MEDIA_BUS_FMT_SBGGR12_1X12:
pixelformat = V4L2_PIX_FMT_SBGGR12;
break;
case MEDIA_BUS_FMT_SGBRG12_1X12:
pixelformat = V4L2_PIX_FMT_SGBRG12;
break;
case MEDIA_BUS_FMT_SGRBG12_1X12:
pixelformat = V4L2_PIX_FMT_SGRBG12;
break;
case MEDIA_BUS_FMT_SRGGB12_1X12:
pixelformat = V4L2_PIX_FMT_SRGGB12;
break;
case MEDIA_BUS_FMT_SPD_2X8:
pixelformat = V4l2_PIX_FMT_SPD16;
break;
case MEDIA_BUS_FMT_EBD_1X8:
pixelformat = V4l2_PIX_FMT_EBD8;
break;
default:
pixelformat = V4L2_PIX_FMT_SRGGB10;
}
return pixelformat;
}
void rkcif_set_default_fmt(struct rkcif_device *cif_dev)
{
struct v4l2_subdev_selection input_sel;
struct v4l2_pix_format_mplane pixm;
struct v4l2_subdev_format fmt;
int stream_num = 0;
int ret, i;
if (cif_dev->chip_id < CHIP_RV1126_CIF)
return;
stream_num = RKCIF_MAX_STREAM_MIPI;
if (!cif_dev->terminal_sensor.sd)
rkcif_update_sensor_info(&cif_dev->stream[0]);
if (cif_dev->terminal_sensor.sd) {
for (i = 0; i < stream_num; i++) {
if (i == RKCIF_STREAM_MIPI_ID3)
cif_dev->stream[i].is_compact = false;
memset(&fmt, 0, sizeof(fmt));
fmt.pad = i;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
v4l2_subdev_call(cif_dev->terminal_sensor.sd, pad, get_fmt, NULL, &fmt);
memset(&pixm, 0, sizeof(pixm));
pixm.pixelformat = rkisp_mbus_pixelcode_to_v4l2(fmt.format.code);
pixm.width = fmt.format.width;
pixm.height = fmt.format.height;
memset(&input_sel, 0, sizeof(input_sel));
input_sel.pad = i;
input_sel.target = V4L2_SEL_TGT_CROP_BOUNDS;
ret = v4l2_subdev_call(cif_dev->terminal_sensor.sd,
pad, get_selection, NULL,
&input_sel);
if (!ret) {
pixm.width = input_sel.r.width;
pixm.height = input_sel.r.height;
}
rkcif_set_fmt(&cif_dev->stream[i], &pixm, false);
}
}
}
#define CSI_START_INTSTAT(id) (0x3 << ((id) * 2))
void rkcif_irq_pingpong(struct rkcif_device *cif_dev)
{
struct rkcif_stream *stream;
struct rkcif_stream *detect_stream = &cif_dev->stream[0];
struct v4l2_mbus_config *mbus;
unsigned int intstat = 0x0, i = 0xff, bak_intstat = 0x0;
unsigned long flags;
int ret = 0;
if (!cif_dev->active_sensor)
return;
mbus = &cif_dev->active_sensor->mbus;
if ((mbus->type == V4L2_MBUS_CSI2 ||
mbus->type == V4L2_MBUS_CCP2) &&
(cif_dev->chip_id == CHIP_RK1808_CIF ||
cif_dev->chip_id == CHIP_RV1126_CIF ||
cif_dev->chip_id == CHIP_RK3568_CIF)) {
int mipi_id;
u32 lastline = 0;
intstat = rkcif_read_register(cif_dev, CIF_REG_MIPI_LVDS_INTSTAT);
lastline = rkcif_read_register(cif_dev, CIF_REG_MIPI_LVDS_LINE_LINE_CNT_ID0_1);
/* clear all interrupts that has been triggered */
rkcif_write_register(cif_dev, CIF_REG_MIPI_LVDS_INTSTAT, intstat);
if (intstat & CSI_FIFO_OVERFLOW) {
cif_dev->irq_stats.csi_overflow_cnt++;
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: csi fifo overflow, intstat:0x%x, lastline:%d!!\n",
intstat, lastline);
return;
}
if (intstat & CSI_BANDWIDTH_LACK) {
cif_dev->irq_stats.csi_bwidth_lack_cnt++;
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: csi bandwidth lack, intstat:0x%x!!\n",
intstat);
return;
}
if (intstat & CSI_ALL_ERROR_INTEN) {
cif_dev->irq_stats.all_err_cnt++;
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: CSI_ALL_ERROR_INTEN:0x%x!!\n", intstat);
return;
}
if ((intstat & (CSI_FRAME0_START_ID0 | CSI_FRAME1_START_ID0)) ==
(CSI_FRAME0_START_ID0 | CSI_FRAME1_START_ID0)) {
v4l2_err(&cif_dev->v4l2_dev, "%s:ERR: double fs in one fs int\n",
__func__);
}
for (i = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
if (intstat & CSI_LINE_INTSTAT(i)) {
stream = &cif_dev->stream[i];
if (stream->is_line_inten) {
stream->line_int_cnt++;
rkcif_line_wake_up(stream, stream->id);
rkcif_modify_line_int(stream, false);
stream->is_line_inten = false;
}
v4l2_dbg(1, rkcif_debug, &cif_dev->v4l2_dev,
"%s: id0 cur line:%d\n", __func__, lastline & 0x3fff);
}
}
for (i = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
mipi_id = rkcif_csi_g_mipi_id(&cif_dev->v4l2_dev,
intstat);
if (mipi_id < 0)
continue;
stream = &cif_dev->stream[mipi_id];
if (stream->stopping && stream->is_can_stop) {
rkcif_stream_stop(stream);
stream->stopping = false;
wake_up(&stream->wq_stopped);
continue;
}
if (stream->state != RKCIF_STATE_STREAMING)
continue;
switch (mipi_id) {
case RKCIF_STREAM_MIPI_ID0:
stream->frame_phase = SW_FRM_END_ID0(intstat);
intstat &= ~CSI_FRAME_END_ID0;
break;
case RKCIF_STREAM_MIPI_ID1:
stream->frame_phase = SW_FRM_END_ID1(intstat);
intstat &= ~CSI_FRAME_END_ID1;
break;
case RKCIF_STREAM_MIPI_ID2:
stream->frame_phase = SW_FRM_END_ID2(intstat);
intstat &= ~CSI_FRAME_END_ID2;
break;
case RKCIF_STREAM_MIPI_ID3:
stream->frame_phase = SW_FRM_END_ID3(intstat);
intstat &= ~CSI_FRAME_END_ID3;
break;
}
if (stream->crop_dyn_en)
rkcif_dynamic_crop(stream);
rkcif_update_stream(cif_dev, stream, mipi_id);
rkcif_detect_wake_up_mode_change(stream);
if (mipi_id == RKCIF_STREAM_MIPI_ID0) {
if ((intstat & (CSI_FRAME1_START_ID0 | CSI_FRAME0_START_ID0)) == 0 &&
detect_stream->fs_cnt_in_single_frame > 1) {
v4l2_dbg(2, rkcif_debug, &cif_dev->v4l2_dev,
"%s ERR: multi fs in oneframe, bak_int:0x%x, fs_num:%u\n",
__func__,
bak_intstat,
detect_stream->fs_cnt_in_single_frame);
detect_stream->is_fs_fe_not_paired = true;
detect_stream->fs_cnt_in_single_frame = 0;
} else {
detect_stream->fs_cnt_in_single_frame--;
}
}
cif_dev->irq_stats.all_frm_end_cnt++;
}
for (i = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
if (intstat & CSI_START_INTSTAT(i)) {
stream = &cif_dev->stream[i];
if (i == 0) {
if (mbus->type == V4L2_MBUS_CSI2)
rkcif_csi2_event_inc_sof();
else if (mbus->type == V4L2_MBUS_CCP2)
rkcif_lvds_event_inc_sof(cif_dev);
stream->fs_cnt_in_single_frame++;
spin_lock_irqsave(&stream->fps_lock, flags);
stream->readout.fs_timestamp = ktime_get_ns();
spin_unlock_irqrestore(&stream->fps_lock, flags);
} else {
spin_lock_irqsave(&stream->fps_lock, flags);
stream->readout.fs_timestamp = ktime_get_ns();
spin_unlock_irqrestore(&stream->fps_lock, flags);
}
}
}
} else {
u32 lastline, lastpix, ctl;
u32 cif_frmst, frmid, int_en;
struct rkcif_stream *stream;
int ch_id;
intstat = rkcif_read_register(cif_dev, CIF_REG_DVP_INTSTAT);
cif_frmst = rkcif_read_register(cif_dev, CIF_REG_DVP_FRAME_STATUS);
lastline = rkcif_read_register(cif_dev, CIF_REG_DVP_LAST_LINE);
lastline = CIF_FETCH_Y_LAST_LINE(lastline);
lastpix = rkcif_read_register(cif_dev, CIF_REG_DVP_LAST_PIX);
lastpix = CIF_FETCH_Y_LAST_LINE(lastpix);
ctl = rkcif_read_register(cif_dev, CIF_REG_DVP_CTRL);
rkcif_write_register(cif_dev, CIF_REG_DVP_INTSTAT, intstat);
stream = &cif_dev->stream[RKCIF_STREAM_CIF];
if ((intstat & LINE_INT_END) && !(intstat & FRAME_END) &&
(cif_dev->dvp_sof_in_oneframe == 0)) {
if ((intstat & (PRE_INF_FRAME_END | PST_INF_FRAME_END)) == 0x0) {
if ((intstat & INTSTAT_ERR) == 0x0) {
rkcif_dvp_event_inc_sof(cif_dev);
int_en = rkcif_read_register(cif_dev, CIF_REG_DVP_INTEN);
int_en &= ~LINE_INT_EN;
rkcif_write_register(cif_dev, CIF_REG_DVP_INTEN, int_en);
cif_dev->dvp_sof_in_oneframe = 1;
}
}
}
if (intstat & BUS_ERR) {
cif_dev->irq_stats.dvp_bus_err_cnt++;
v4l2_info(&cif_dev->v4l2_dev, "dvp bus err\n");
}
if (intstat & DVP_ALL_OVERFLOW) {
cif_dev->irq_stats.dvp_overflow_cnt++;
v4l2_info(&cif_dev->v4l2_dev, "dvp overflow err\n");
}
if (intstat & LINE_ERR) {
cif_dev->irq_stats.dvp_line_err_cnt++;
v4l2_info(&cif_dev->v4l2_dev, "dvp line err\n");
}
if (intstat & PIX_ERR) {
cif_dev->irq_stats.dvp_pix_err_cnt++;
v4l2_info(&cif_dev->v4l2_dev, "dvp pix err\n");
}
if (intstat & INTSTAT_ERR) {
cif_dev->irq_stats.all_err_cnt++;
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: DVP_ALL_ERROR_INTEN:0x%x!!\n", intstat);
}
/* There are two irqs enabled:
* - PST_INF_FRAME_END: cif FIFO is ready,
* this is prior to FRAME_END
* - FRAME_END: cif has saved frame to memory,
* a frame ready
*/
if ((intstat & PST_INF_FRAME_END)) {
stream = &cif_dev->stream[RKCIF_STREAM_CIF];
if (stream->stopping)
/* To stop CIF ASAP, before FRAME_END irq */
rkcif_write_register(cif_dev, CIF_REG_DVP_CTRL,
ctl & (~ENABLE_CAPTURE));
}
if (cif_dev->chip_id <= CHIP_RK1808_CIF) {
stream = &cif_dev->stream[RKCIF_STREAM_CIF];
if ((intstat & FRAME_END)) {
struct vb2_v4l2_buffer *vb_done = NULL;
int_en = rkcif_read_register(cif_dev, CIF_REG_DVP_INTEN);
int_en |= LINE_INT_EN;
rkcif_write_register(cif_dev, CIF_REG_DVP_INTEN, int_en);
cif_dev->dvp_sof_in_oneframe = 0;
if (stream->stopping) {
rkcif_stream_stop(stream);
stream->stopping = false;
rkcif_assign_dummy_buffer(stream);
wake_up(&stream->wq_stopped);
return;
}
frmid = CIF_GET_FRAME_ID(cif_frmst);
if ((cif_frmst == 0xfffd0002) || (cif_frmst == 0xfffe0002)) {
v4l2_info(&cif_dev->v4l2_dev, "frmid:%d, frmstat:0x%x\n",
frmid, cif_frmst);
rkcif_write_register(cif_dev, CIF_REG_DVP_FRAME_STATUS,
cif_frmst & 0x3);
}
if (lastline != stream->pixm.height ||
(!(cif_frmst & CIF_F0_READY) &&
!(cif_frmst & CIF_F1_READY))) {
cif_dev->dvp_sof_in_oneframe = 1;
v4l2_err(&cif_dev->v4l2_dev,
"Bad frame, pp irq:0x%x frmst:0x%x size:%dx%d\n",
intstat, cif_frmst, lastpix, lastline);
return;
}
if (cif_frmst & CIF_F0_READY) {
if (stream->curr_buf)
vb_done = &stream->curr_buf->vb;
stream->frame_phase = CIF_CSI_FRAME0_READY;
} else if (cif_frmst & CIF_F1_READY) {
if (stream->next_buf)
vb_done = &stream->next_buf->vb;
stream->frame_phase = CIF_CSI_FRAME1_READY;
}
spin_lock_irqsave(&stream->fps_lock, flags);
if (stream->frame_phase & CIF_CSI_FRAME0_READY)
stream->fps_stats.frm0_timestamp = ktime_get_ns();
else if (stream->frame_phase & CIF_CSI_FRAME1_READY)
stream->fps_stats.frm1_timestamp = ktime_get_ns();
spin_unlock_irqrestore(&stream->fps_lock, flags);
ret = rkcif_assign_new_buffer_oneframe(stream,
RKCIF_YUV_ADDR_STATE_UPDATE);
if (vb_done && (!ret)) {
vb_done->sequence = stream->frame_idx;
rkcif_vb_done_oneframe(stream, vb_done);
}
stream->frame_idx++;
cif_dev->irq_stats.all_frm_end_cnt++;
}
} else {
for (i = 0; i < RKCIF_MAX_STREAM_DVP; i++) {
ch_id = rkcif_dvp_g_ch_id(&cif_dev->v4l2_dev, &intstat, cif_frmst);
if (ch_id < 0)
continue;
if (ch_id == RKCIF_STREAM_MIPI_ID0) {
int_en = rkcif_read_register(cif_dev, CIF_REG_DVP_INTEN);
int_en |= LINE_INT_EN;
rkcif_write_register(cif_dev, CIF_REG_DVP_INTEN, int_en);
cif_dev->dvp_sof_in_oneframe = 0;
}
stream = &cif_dev->stream[ch_id];
if (stream->stopping) {
rkcif_stream_stop(stream);
stream->stopping = false;
wake_up(&stream->wq_stopped);
continue;
}
if (stream->state != RKCIF_STATE_STREAMING)
continue;
switch (ch_id) {
case RKCIF_STREAM_MIPI_ID0:
stream->frame_phase = DVP_FRM_STS_ID0(cif_frmst);
break;
case RKCIF_STREAM_MIPI_ID1:
stream->frame_phase = DVP_FRM_STS_ID1(cif_frmst);
break;
case RKCIF_STREAM_MIPI_ID2:
stream->frame_phase = DVP_FRM_STS_ID2(cif_frmst);
break;
case RKCIF_STREAM_MIPI_ID3:
stream->frame_phase = DVP_FRM_STS_ID3(cif_frmst);
break;
}
frmid = CIF_GET_FRAME_ID(cif_frmst);
if ((frmid == 0xfffd) || (frmid == 0xfffe)) {
v4l2_info(&cif_dev->v4l2_dev, "frmid:%d, frmstat:0x%x\n",
frmid, cif_frmst);
rkcif_write_register(cif_dev, CIF_REG_DVP_FRAME_STATUS,
cif_frmst & 0xffff);
}
rkcif_update_stream(cif_dev, stream, ch_id);
cif_dev->irq_stats.all_frm_end_cnt++;
}
}
if (stream->crop_dyn_en)
rkcif_dynamic_crop(stream);
}
}
void rkcif_irq_lite_lvds(struct rkcif_device *cif_dev)
{
struct rkcif_stream *stream;
struct v4l2_mbus_config *mbus = &cif_dev->active_sensor->mbus;
unsigned int intstat, i = 0xff;
if (mbus->type == V4L2_MBUS_CCP2 &&
cif_dev->chip_id == CHIP_RV1126_CIF_LITE) {
int mipi_id;
u32 lastline = 0;
intstat = rkcif_read_register(cif_dev, CIF_REG_MIPI_LVDS_INTSTAT);
lastline = rkcif_read_register(cif_dev, CIF_REG_MIPI_LVDS_LINE_INT_NUM_ID0_1);
/* clear all interrupts that has been triggered */
rkcif_write_register(cif_dev, CIF_REG_MIPI_LVDS_INTSTAT, intstat);
if (intstat & CSI_FIFO_OVERFLOW) {
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: cif lite lvds fifo overflow, intstat:0x%x, lastline:%d!!\n",
intstat, lastline);
return;
}
if (intstat & CSI_BANDWIDTH_LACK) {
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: cif lite lvds bandwidth lack, intstat:0x%x!!\n",
intstat);
return;
}
if (intstat & CSI_ALL_ERROR_INTEN) {
v4l2_err(&cif_dev->v4l2_dev,
"ERROR: cif lite lvds all err:0x%x!!\n", intstat);
return;
}
if (intstat & CSI_FRAME0_START_ID0)
rkcif_lvds_event_inc_sof(cif_dev);
if (intstat & CSI_FRAME1_START_ID0)
rkcif_lvds_event_inc_sof(cif_dev);
/* if do not reach frame dma end, return irq */
mipi_id = rkcif_csi_g_mipi_id(&cif_dev->v4l2_dev, intstat);
if (mipi_id < 0)
return;
for (i = 0; i < RKCIF_MAX_STREAM_MIPI; i++) {
mipi_id = rkcif_csi_g_mipi_id(&cif_dev->v4l2_dev,
intstat);
if (mipi_id < 0)
continue;
stream = &cif_dev->stream[mipi_id];
if (stream->stopping) {
rkcif_stream_stop(stream);
stream->stopping = false;
wake_up(&stream->wq_stopped);
continue;
}
if (stream->state != RKCIF_STATE_STREAMING)
continue;
switch (mipi_id) {
case RKCIF_STREAM_MIPI_ID0:
stream->frame_phase = SW_FRM_END_ID0(intstat);
intstat &= ~CSI_FRAME_END_ID0;
break;
case RKCIF_STREAM_MIPI_ID1:
stream->frame_phase = SW_FRM_END_ID1(intstat);
intstat &= ~CSI_FRAME_END_ID1;
break;
case RKCIF_STREAM_MIPI_ID2:
stream->frame_phase = SW_FRM_END_ID2(intstat);
intstat &= ~CSI_FRAME_END_ID2;
break;
case RKCIF_STREAM_MIPI_ID3:
stream->frame_phase = SW_FRM_END_ID3(intstat);
intstat &= ~CSI_FRAME_END_ID3;
break;
}
rkcif_update_stream(cif_dev, stream, mipi_id);
}
cif_dev->irq_stats.all_frm_end_cnt++;
}
}