2025-05-10 21:58:58 +08:00

71 lines
2.1 KiB
Python
Executable File

import numpy as np
import cv2
from rknn.api import RKNN
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]],
std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]])
print('done')
# Load model
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb='./conv_128.pb',
inputs=['input1', 'input2', 'input3', 'input4'],
outputs=['output'],
input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]])
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./conv_128.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('./dog_128x128.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # nhwc
img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE)
img_gray = np.expand_dims(img_gray, -1) # nhwc
input2 = np.load('input2.npy').astype('float32') # nchw
input3 = np.load('input3.npy').astype('float32') # nchw
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img, input2, input3, img_gray], data_format=['nhwc', 'nchw', 'nchw', 'nhwc'])
np.save('./functions_multi_input_test_0.npy', outputs[0])
print('done')
outputs[0] = outputs[0].reshape((1, -1))
print('inference result: ', outputs)
rknn.release()