/* * Copyright (c) 2022 Rockchip Electronics Co. Ltd. */ #include #include "c_model.h" #include "cmode_adapter.h" #include "rkcrypto_core.h" #include "rkcrypto_mem.h" #include "rkcrypto_otp_key.h" #include "test_otp_key_crypto.h" #include "test_utils.h" uint8_t otp_key0[32] = { 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, }; uint8_t otp_key1[32] = { 0xdf, 0x20, 0x5a, 0xb3, 0x88, 0x50, 0x9e, 0x4f, 0x01, 0x21, 0xe7, 0xc9, 0x24, 0x00, 0x1b, 0x84, 0x2a, 0xfb, 0x83, 0xac, 0xe4, 0x61, 0x4a, 0x94, 0x1f, 0xf4, 0x84, 0xc3, 0x1f, 0xe5, 0x52, 0xc7, }; uint8_t otp_key2[32] = { 0xd5, 0x20, 0xaa, 0xb3, 0x88, 0x5f, 0x9e, 0x41, 0x05, 0x21, 0x07, 0xc9, 0x44, 0x00, 0x1b, 0x80, 0x23, 0xfb, 0x13, 0xac, 0xe4, 0x66, 0x4a, 0x93, 0x13, 0xf4, 0x04, 0xc3, 0x3f, 0xe7, 0x52, 0xc0, }; uint8_t otp_key3[32] = { 0x10, 0x44, 0x80, 0xb3, 0x88, 0x5f, 0x02, 0x03, 0x05, 0x21, 0x07, 0xc9, 0x44, 0x00, 0x1b, 0x80, 0x5f, 0x9e, 0x41, 0xac, 0xe4, 0x64, 0x43, 0xa3, 0x13, 0x06, 0x07, 0x08, 0x3f, 0xe7, 0x05, 0x06, }; #define DATA_BUTT 0xFFFFFFFF #define TEST_DATA_MAX (500 * 1024) static const uint32_t test_key_ids[] = { RK_OEM_OTP_KEY0, RK_OEM_OTP_KEY1, RK_OEM_OTP_KEY2, RK_OEM_OTP_KEY3, }; struct test_otp_key_item { uint32_t algo; uint32_t modes[RK_CIPHER_MODE_MAX]; uint32_t key_lens[4]; uint32_t iv_len; uint32_t data_len; uint32_t operations[4]; }; static struct test_otp_key_item test_item_tbl[] = { { .algo = RK_ALGO_AES, .modes = { RK_CIPHER_MODE_ECB, RK_CIPHER_MODE_CBC, RK_CIPHER_MODE_CTS, RK_CIPHER_MODE_CTR, RK_CIPHER_MODE_CFB, RK_CIPHER_MODE_OFB, DATA_BUTT, }, .key_lens = {16, 24, 32, DATA_BUTT}, .iv_len = AES_BLOCK_SIZE, .data_len = TEST_DATA_MAX, .operations = { RK_OP_CIPHER_ENC, RK_OP_CIPHER_DEC, DATA_BUTT, }, }, { .algo = RK_ALGO_SM4, .modes = { RK_CIPHER_MODE_ECB, RK_CIPHER_MODE_CBC, RK_CIPHER_MODE_CTS, RK_CIPHER_MODE_CTR, RK_CIPHER_MODE_CFB, RK_CIPHER_MODE_OFB, DATA_BUTT, }, .key_lens = {16, DATA_BUTT}, .iv_len = SM4_BLOCK_SIZE, .data_len = TEST_DATA_MAX, .operations = { RK_OP_CIPHER_ENC, RK_OP_CIPHER_DEC, DATA_BUTT, }, }, }; void test_set_otp_tag(void) { uint32_t res; res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY0); printf("trusty_set_oem_hr_otp_read_lock 0. res:%d\n", res); res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY1); printf("trusty_set_oem_hr_otp_read_lock 1. res:%d\n", res); res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY2); printf("trusty_set_oem_hr_otp_read_lock 2. res:%d\n", res); res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY3); printf("trusty_set_oem_hr_otp_read_lock 3. res:%d\n", res); return; } void test_write_otp_key(void) { uint32_t res; res = rk_write_oem_otp_key(RK_OEM_OTP_KEY0, otp_key0, sizeof(otp_key0)); printf("write otp key 0. res:%d\n", res); res = rk_write_oem_otp_key(RK_OEM_OTP_KEY1, otp_key1, sizeof(otp_key1)); printf("write otp key 1. res:%d\n", res); res = rk_write_oem_otp_key(RK_OEM_OTP_KEY2, otp_key2, sizeof(otp_key2)); printf("write otp key 2. res:%d\n", res); res = rk_write_oem_otp_key(RK_OEM_OTP_KEY3, otp_key3, sizeof(otp_key3)); printf("write otp key 3. res:%d\n", res); return; } static int test_otp_key_item_virt(uint32_t key_id, const struct test_otp_key_item *item) { int res = 0; RK_RES rk_res; uint32_t i, j, k; uint8_t *key = NULL; rk_cipher_config cipher_cfg; uint8_t *plain = NULL, *cipher_soft = NULL, *cipher_hard = NULL; uint32_t algo = 0, mode = 0, key_len, data_len, operation; plain = malloc(item->data_len); if (!plain) { printf("plain malloc %uByte error!\n", item->data_len); res = -1; goto exit; } cipher_soft = malloc(item->data_len); if (!cipher_soft) { printf("cipher_soft malloc %uByte error!\n", item->data_len); res = -1; goto exit; } cipher_hard = malloc(item->data_len); if (!cipher_hard) { printf("cipher_hard malloc %uByte error!\n", item->data_len); res = -1; goto exit; } switch (key_id) { case RK_OEM_OTP_KEY0: key = otp_key0; break; case RK_OEM_OTP_KEY1: key = otp_key1; break; case RK_OEM_OTP_KEY2: key = otp_key2; break; case RK_OEM_OTP_KEY3: key = otp_key3; break; default: return -1; } memset(&cipher_cfg, 0x00, sizeof(cipher_cfg)); test_get_rng(cipher_cfg.iv, item->iv_len); test_get_rng(plain, item->data_len); memset(cipher_soft, 0x00, item->data_len); memset(cipher_hard, 0x00, item->data_len); for (i = 0; i < ARRAY_SIZE(item->modes); i++) { if (item->modes[i] == DATA_BUTT) break; algo = item->algo; mode = item->modes[i]; for (j = 0; j < ARRAY_SIZE(item->key_lens); j++) { if (item->key_lens[j] == DATA_BUTT) break; key_len = item->key_lens[j]; data_len = item->data_len; if (is_no_multi_blocksize(mode)) data_len -= 3; for (k = 0; k < ARRAY_SIZE(item->operations); k++) { if (item->operations[k] == DATA_BUTT) break; operation = item->operations[k]; cipher_cfg.algo = algo; cipher_cfg.mode = mode; cipher_cfg.operation = operation; cipher_cfg.key_len = key_len; cipher_cfg.reserved = NULL; rk_res = rk_oem_otp_key_cipher_virt(key_id, &cipher_cfg, plain, cipher_hard, data_len); if (rk_res == RK_CRYPTO_ERR_NOT_SUPPORTED) { printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tN/A\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); res = 0; continue; } else if (res) { printf("rk_oem_otp_key_cipher_virt fail! 0x%08x\n", res); goto exit; } rk_res = soft_cipher(algo, mode, operation, key, key_len, cipher_cfg.iv, plain, data_len, cipher_soft); if (res) { printf("soft_cipher fail! 0x%08x\n", res); res = -1; goto exit; } if (memcmp(cipher_soft, cipher_hard, data_len)) { printf("rk_oem_otp_key_cipher_virt compare failed.\n"); res = -1; goto exit; } printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tPASS\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); } } } exit: if (plain) free(plain); if (cipher_soft) free(cipher_soft); if (cipher_hard) free(cipher_hard); if (res) printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tFAIL\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); return res; } static int test_otp_key_item_fd(uint32_t key_id, const struct test_otp_key_item *item) { int res = 0; RK_RES rk_res; uint32_t i, j, k; uint8_t *key = NULL; rk_cipher_config cipher_cfg; uint8_t *cipher_soft = NULL; rk_crypto_mem *plain = NULL; rk_crypto_mem *cipher_hard = NULL; uint32_t algo = 0, mode = 0, key_len, data_len, operation; cipher_soft = malloc(item->data_len); if (!cipher_soft) { printf("cipher_soft malloc %uByte error!\n", item->data_len); res = -1; goto exit; } plain = rk_crypto_mem_alloc(item->data_len); if (!plain) { printf("rk_crypto_mem_alloc %uByte error!\n", item->data_len); res = -1; goto exit; } cipher_hard = rk_crypto_mem_alloc(item->data_len); if (!cipher_hard) { printf("rk_crypto_mem_alloc %uByte error!\n", item->data_len); res = -1; goto exit; } switch (key_id) { case RK_OEM_OTP_KEY0: key = otp_key0; break; case RK_OEM_OTP_KEY1: key = otp_key1; break; case RK_OEM_OTP_KEY2: key = otp_key2; break; case RK_OEM_OTP_KEY3: key = otp_key3; break; default: return -1; } memset(&cipher_cfg, 0x00, sizeof(cipher_cfg)); test_get_rng(cipher_cfg.iv, item->iv_len); test_get_rng(plain->vaddr, item->data_len); memset(cipher_soft, 0x00, item->data_len); memset(cipher_hard->vaddr, 0x00, item->data_len); for (i = 0; i < ARRAY_SIZE(item->modes); i++) { if (item->modes[i] == DATA_BUTT) break; algo = item->algo; mode = item->modes[i]; for (j = 0; j < ARRAY_SIZE(item->key_lens); j++) { if (item->key_lens[j] == DATA_BUTT) break; key_len = item->key_lens[j]; data_len = item->data_len; if (is_no_multi_blocksize(mode)) data_len -= 3; for (k = 0; k < ARRAY_SIZE(item->operations); k++) { if (item->operations[k] == DATA_BUTT) break; operation = item->operations[k]; cipher_cfg.algo = algo; cipher_cfg.mode = mode; cipher_cfg.operation = operation; cipher_cfg.key_len = key_len; cipher_cfg.reserved = NULL; rk_res = rk_oem_otp_key_cipher(key_id, &cipher_cfg, plain->dma_fd, cipher_hard->dma_fd, data_len); if (rk_res == RK_CRYPTO_ERR_NOT_SUPPORTED) { printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tN/A\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); res = 0; continue; } else if (res) { printf("rk_oem_otp_key_cipher fail! 0x%08x\n", res); goto exit; } rk_res = soft_cipher(algo, mode, operation, key, key_len, cipher_cfg.iv, plain->vaddr, data_len, cipher_soft); if (res) { printf("soft_cipher fail! 0x%08x\n", res); res = -1; goto exit; } if (memcmp(cipher_soft, cipher_hard->vaddr, data_len)) { printf("rk_oem_otp_key_cipher compare failed.\n"); res = -1; goto exit; } printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tPASS\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); } } } exit: if (cipher_soft) free(cipher_soft); if (plain) rk_crypto_mem_free(plain); if (cipher_hard) rk_crypto_mem_free(cipher_hard); if (res) printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tFAIL\n", key_id, test_algo_name(algo), key_len * 8, test_mode_name(mode), test_op_name(operation)); return res; } static int test_otp_key_fd(void) { int res; uint32_t i, j; uint32_t key_id; res = rk_crypto_init(); if (res) { printf("rk_crypto_init error!\n"); return res; } for (i = 0; i < ARRAY_SIZE(test_key_ids); i++) { key_id = test_key_ids[i]; for (j = 0; j < ARRAY_SIZE(test_item_tbl); j++) { res = test_otp_key_item_fd(key_id, &test_item_tbl[j]); if (res) goto exit; } } exit: rk_crypto_deinit(); return res; } static int test_otp_key_virt(void) { int res; uint32_t i, j; uint32_t key_id; for (i = 0; i < ARRAY_SIZE(test_key_ids); i++) { key_id = test_key_ids[i]; for (j = 0; j < ARRAY_SIZE(test_item_tbl); j++) { res = test_otp_key_item_virt(key_id, &test_item_tbl[j]); if (res) goto exit; } } exit: return res; } RK_RES test_otp_key(void) { if (test_otp_key_virt()) return RK_CRYPTO_ERR_GENERIC; if (test_otp_key_fd()) return RK_CRYPTO_ERR_GENERIC; return RK_CRYPTO_SUCCESS; }