/****************************************************************************** * * Copyright(c) 2019 - 2020 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #ifndef _PLTFM_OPS_NONE_H_ #define _PLTFM_OPS_NONE_H_ #include "phl_types.h" static char *_os_strpbrk(const char *cs, const char *ct) { const char *sc1, *sc2; for (sc1 = cs; *sc1 != '\0'; ++sc1) { for (sc2 = ct; *sc2 != '\0'; ++sc2) { if (*sc1 == *sc2) return (char *)sc1; } } return NULL; } static __inline char *_os_strsep(char **s, const char *ct) { char *sbegin = *s; char *end; if (sbegin == NULL) return NULL; end = _os_strpbrk(sbegin, ct); if (end) *end++ = '\0'; *s = end; return sbegin; } static __inline int _os_sscanf(const char *buf, const char *fmt, ...) { return 0; } static __inline int _os_strcmp(const char *s1, const char *s2) { while (*s1 == *s2) { if (*s1 == '\0') break; s1++; s2++; } return *s1 - *s2; } static __inline int _os_strncmp(const char *s1, const char *s2, size_t n) { if (n == 0) return 0; while (*s1 == *s2) { if (*s1 == '\0') break; s1++; s2++; n--; if (n == 0) return 0; } return *s1 - *s2; } static __inline char *_os_strcpy(char *dest, const char *src) { return NULL; } static inline char *_os_strncpy(char *dest, const char *src, size_t n) { return NULL; } static __inline char *_os_strchr(const char *s, int c) { while (*s != (char)c) if (*s++ == '\0') return NULL; return (char *)s; } static __inline int _os_snprintf(char *str, size_t size, const char *format, ...) { return 0; } static __inline int _os_strncat(char *dest, char *src, size_t n) { return 0; } static __inline u32 _os_strlen(u8 *buf) { return 0; } static __inline void _os_delay_ms(void *h, u32 ms) { } static __inline void _os_delay_us(void *h, u32 us) { } static __inline void _os_sleep_ms(void *h, u32 ms) { } static __inline void _os_sleep_us(void *h, u32 us) { } static inline u32 _os_get_cur_time_us(void) { return 0; } static inline u32 _os_get_cur_time_ms(void) { return (_os_get_cur_time_us() / 1000); } static inline u64 _os_modular64(u64 x, u64 y) { return x % y; } static inline u64 _os_division64(u64 x, u64 y) { u32 low, low2, high, rem, result; low = x & 0xFFFFFFFF; high = x >> 32; rem = high % (u32)y; high= high / (u32)y; low2 = low >> 16; low2 += rem << 16; rem = low2 % (u32)y; low2 = low2 / (u32)y; low = low & 0xFFFFFFFF; low += rem << 16; rem = low % (u32)y; low = low / (u32)y; result = low + ((u64)low2 << 16) + ((u64)high << 32); return result; } static inline u64 _os_minus64(u64 x, u64 y) { return x - y; } static inline u64 _os_add64(u64 x, u64 y) { return x + y; } static inline u32 _os_div_round_up(u32 x, u32 y) { return (x + y - 1) / y; } #ifdef CONFIG_PCI_HCI static inline void _os_cache_inv(void *d, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, u8 direction) { } static inline void _os_cache_wback(void *d, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, u8 direction) { } static inline void *_os_dma_pool_create(void *d, char *name, u32 wd_page_sz) { return NULL; } static inline void _os_dma_pool_destory(void *d, void *pool) { } /* txbd, rxbd, wd */ static inline void *_os_shmem_alloc(void *d, void *pool, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, u8 cache, u8 direction, void **os_rsvd) { return NULL; } static inline void _os_shmem_free(void *d, void *pool, u8 *vir_addr, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, u8 cache, u8 direction, void *os_rsvd) { } #endif /*CONFIG_PCI_HCI*/ static inline void *_os_pkt_buf_unmap_rx(void *d, _dma bus_addr_l, _dma bus_addr_h, u32 buf_sz) { return NULL; } static inline void *_os_pkt_buf_map_rx(void *d, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, void *os_priv) { return NULL; } static inline void *_os_pkt_buf_alloc_rx(void *d, _dma *bus_addr_l, _dma *bus_addr_h, u32 buf_sz, u8 cache, void **os_priv) { return NULL; } static inline u8 *_os_pkt_buf_free_rx(void *d, u8 *vir_addr, _dma bus_addr_l, _dma bus_addr_h, u32 buf_sz, u8 cache, void *os_priv) { return NULL; } /* phl pre-alloc network layer buffer */ static inline void * _os_alloc_netbuf(void *d, u32 buf_sz, void **os_priv) { return NULL; // windows never do this. } /* Free netbuf for error case. (ex. drop rx-reorder packet) */ static inline void _os_free_netbuf(void *d, u8 *vir_addr, u32 buf_sz, void *os_priv) { } static __inline void *_os_mem_alloc(void *h, u32 buf_sz) { return NULL; } static __inline void _os_mem_free(void *h, void *buf, u32 buf_sz) { } /*physically contiguous memory if the buffer will be accessed by a DMA device*/ static __inline void *_os_kmem_alloc(void *h, u32 buf_sz) { return NULL; } /*physically contiguous memory if the buffer will be accessed by a DMA device*/ static __inline void _os_kmem_free(void *h, void *buf, u32 buf_sz) { } static __inline void _os_mem_set(void *h, void *buf, s8 value, u32 size) { } static __inline void _os_mem_cpy(void *h, void *dest, void *src, u32 size) { } static __inline int _os_mem_cmp(void *h, void *ptr1, void *ptr2, u32 size) { return 0; } static __inline void _os_init_timer(void *h, _os_timer *timer, void (*call_back_func)(void *context), void *context, const char *sz_id) { } static __inline void _os_set_timer(void *h, _os_timer *timer, u32 ms_delay) { } static __inline void _os_cancel_timer(void *h, _os_timer *timer) { } static inline void _os_cancel_timer_async(void *d, _os_timer *timer) { } static __inline void _os_release_timer(void *h, _os_timer *timer) { } static __inline void _os_mutex_init(void *h, _os_mutex *mutex) { } static __inline void _os_mutex_deinit(void *h, _os_mutex *mutex) { } static __inline void _os_mutex_lock(void *h, _os_mutex *mutex) { } static __inline void _os_mutex_unlock(void *h, _os_mutex *mutex) { } static inline void _os_sema_init(void *d, _os_sema *sema, int int_cnt) { } static inline void _os_sema_free(void *d, _os_sema *sema) { } static inline void _os_sema_up(void *d, _os_sema *sema) { } static inline u8 _os_sema_down(void *d, _os_sema *sema) { return 0; //success } /* event */ static __inline void _os_event_init(void *h, _os_event *event) { } static __inline void _os_event_free(void *h, _os_event *event) { } static __inline void _os_event_reset(void *h, _os_event *event) { } static __inline void _os_event_set(void *h, _os_event *event) { } /* * m_sec * == 0 : wait for completion * > 0 : wait for timeout or completion * return value * 0:timeout * otherwise:success */ static __inline int _os_event_wait(void *h, _os_event *event, u32 m_sec) { return 0; } /* spinlock */ static __inline void _os_spinlock_init(void *d, _os_lock *plock) { } static __inline void _os_spinlock_free(void *d, _os_lock *plock) { } static inline void _os_spinlock(void *d, _os_lock *plock, enum lock_type type, _os_spinlockfg *flags) { } static inline void _os_spinunlock(void *d, _os_lock *plock, enum lock_type type, _os_spinlockfg *flags) { } static inline int _os_test_and_clear_bit(int nr, unsigned long *addr) { /*UNDO*/ return 0; } static inline int _os_test_and_set_bit(int nr, unsigned long *addr) { /*UNDO*/ return 1; } /* Atomic integer operations */ static __inline void _os_atomic_set(void *d, _os_atomic *v, int i) { } static __inline int _os_atomic_read(void *d, _os_atomic *v) { return 0; } static __inline void _os_atomic_add(void *d, _os_atomic *v, int i) { } static __inline void _os_atomic_sub(void *d, _os_atomic *v, int i) { } static __inline void _os_atomic_inc(void *d, _os_atomic *v) { } static __inline void _os_atomic_dec(void *d, _os_atomic *v) { } static __inline int _os_atomic_add_return(void *d, _os_atomic *v, int i) { return 0; } static __inline int _os_atomic_sub_return(void *d, _os_atomic *v, int i) { return 0; } static __inline int _os_atomic_inc_return(void *d, _os_atomic *v) { return 0; } static __inline int _os_atomic_dec_return(void *d, _os_atomic *v) { return 0; } /* static __inline bool _os_atomic_inc_unless(void *d, _os_atomic *v, int u) { return 0; } */ static inline enum rtw_phl_status _os_tasklet_init(void *drv_priv, _os_tasklet *task, void (*call_back_func)(void* context), void *context) { return RTW_PHL_STATUS_SUCCESS; } static inline enum rtw_phl_status _os_tasklet_deinit(void *drv_priv, _os_tasklet *task) { return RTW_PHL_STATUS_SUCCESS; } static inline enum rtw_phl_status _os_tasklet_schedule(void *drv_priv, _os_tasklet *task) { return RTW_PHL_STATUS_SUCCESS; } static __inline u8 _os_thread_init( void *drv_priv, _os_thread *thread, int (*call_back_func)(void * context), void *context, const char namefmt[]) { return RTW_PHL_STATUS_FAILURE; } static __inline u8 _os_thread_deinit(void *drv_priv, _os_thread *thread) { return RTW_PHL_STATUS_FAILURE; } static __inline enum rtw_phl_status _os_thread_schedule(void *drv_priv, _os_thread *thread) { return RTW_PHL_STATUS_FAILURE; } static inline void _os_thread_stop(void *drv_priv, _os_thread *thread) { } static __inline int _os_thread_check_stop(void *drv_priv, _os_thread *thread) { return 1; } static inline int _os_thread_wait_stop(void *drv_priv, _os_thread *thread) { return RTW_PHL_STATUS_SUCCESS; } #if 0 static inline _os_thread _os_thread_start(int (*threadfn)(void *data), void *data, const char namefmt[]) { return 0; } static inline bool _os_thread_stop(_os_thread th) { return 0; } static inline void _os_thread_wait_stop(void) { } static inline int _os_thread_should_stop(void) { return 0; } #endif static inline enum rtw_phl_status _os_workitem_init(void *drv_priv, _os_workitem *workitem, void (*call_back_func)(void* context), void *context) { return RTW_PHL_STATUS_SUCCESS; } static inline enum rtw_phl_status _os_workitem_schedule(void *drv_priv, _os_workitem *workitem) { return RTW_PHL_STATUS_SUCCESS; } static inline enum rtw_phl_status _os_workitem_deinit(void *drv_priv, _os_workitem *workitem) { return RTW_PHL_STATUS_SUCCESS; } /* * _os_read_file - phl read file api * @path: path of the file to open and read * @buf: the address of allocated buffer to store the file content * @sz: the bytes to read at most * * returns bytes read */ static inline u32 _os_read_file(const char *path, u8 *buf, u32 sz) { /* OS Dependent API */ return 0; } #ifdef CONFIG_PCI_HCI static __inline u8 _os_read8_pcie(void *h, u32 addr) { return 0; } static __inline u16 _os_read16_pcie(void *h, u32 addr) { return 0; } static __inline u32 _os_read32_pcie(void *h, u32 addr) { return 0; } static __inline u32 _os_write8_pcie(void *h, u32 addr, u8 val) { return 0; } static __inline u32 _os_write16_pcie(void *h, u32 addr, u16 val) { return 0; } static __inline u32 _os_write32_pcie(void *h, u32 addr, u32 val) { return 0; } #endif/*#ifdef CONFIG_PCI_HCI*/ #ifdef CONFIG_USB_HCI static __inline u32 _os_usbctrl_vendorreq(void *h, u8 request, u16 value, u16 index, void *pdata, u16 len, u8 requesttype) { return 0; } static inline int os_usb_tx(void *h, u8 *tx_buf_ptr, u8 bulk_id, u32 len, u8 *pkt_data_buf) { return 1; } static __inline void os_enable_usb_out_pipes(void *drv_priv) { } static __inline void os_disable_usb_out_pipes(void *drv_priv) { /* Free bulkout urb */ } static __inline u8 os_out_token_alloc(void *drv_priv) { return 0; // RTW_PHL_STATUS_SUCCESS } static __inline void os_out_token_free(void *drv_priv) { } static __inline u8 os_in_token_alloc(void *drv_priv) { // Allocate in token (pUrb) list return 0; } static __inline void os_in_token_free(void *drv_priv) { // Free in token (pUrb) list } static __inline u8 os_send_usb_in_token(void *drv_priv, void *rxobj, u8 *inbuf, u32 inbuf_len, u8 pipe_idx, u8 minLen) { // send rtw_rx_buf to os return 0; } static __inline void os_enable_usb_in_pipes(void *drv_priv) { } static __inline void os_disable_usb_in_pipes(void *drv_priv) { } #endif /*CONFIG_USB_HCI*/ #ifdef CONFIG_SDIO_HCI static inline u8 _os_sdio_cmd52_r8(void *d, u32 offset) { return 0; } static inline u8 _os_sdio_cmd53_r8(void *d, u32 offset) { return 0; } static inline u16 _os_sdio_cmd53_r16(void *d, u32 offset) { return 0; } static inline u32 _os_sdio_cmd53_r32(void *d, u32 offset) { return 0; } static inline u8 _os_sdio_cmd53_rn(void *d, u32 offset, u32 size, u8 *data) { return 0; } static inline u8 _os_sdio_cmd53_r(void *d, u32 offset, u32 size, u8 *data) { return 0; } static inline void _os_sdio_cmd52_w8(void *d, u32 offset, u8 val) { } static inline void _os_sdio_cmd53_w8(void *d, u32 offset, u8 val) { } static inline void _os_sdio_cmd53_w16(void *d, u32 offset, u16 val) { } static inline void _os_sdio_cmd53_w32(void *d, u32 offset, u32 val) { } static inline void _os_sdio_cmd53_wn(void *d, u32 offset, u32 size, u8 *data) { } static inline void _os_sdio_cmd53_w(void *d, u32 offset, u32 size, u8 *data) { } static inline u8 _os_sdio_f0_read(void *d, u32 addr, void *buf, size_t len) { return 0; } static inline u8 _os_sdio_read_cia_r8(void *d, u32 addr) { return 0; } #endif /*CONFIG_SDIO_HCI*/ /* * Continuous bits starting from least significant bit * Example: * BIT_LEN_MASK_32(0) => 0x00000000 * BIT_LEN_MASK_32(1) => 0x00000001 * BIT_LEN_MASK_32(2) => 0x00000003 * BIT_LEN_MASK_32(32) => 0xFFFFFFFF */ #define BIT_LEN_MASK_32(__BitLen) ((u32)(0xFFFFFFFF >> (32 - (__BitLen)))) #define BIT_LEN_MASK_16(__BitLen) ((u16)(0xFFFF >> (16 - (__BitLen)))) #define BIT_LEN_MASK_8(__BitLen) ((u8)(0xFF >> (8 - (__BitLen)))) /* * Continuous bits starting from least significant bit * Example: * BIT_OFFSET_LEN_MASK_32(0, 2) => 0x00000003 * BIT_OFFSET_LEN_MASK_32(16, 2) => 0x00030000 */ #define BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) ((u32)(BIT_LEN_MASK_32(__BitLen) << (__BitOffset))) #define BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) ((u16)(BIT_LEN_MASK_16(__BitLen) << (__BitOffset))) #define BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) ((u8)(BIT_LEN_MASK_8(__BitLen) << (__BitOffset))) /* * Convert LE data to host byte order */ #define EF1Byte (u8) #define EF2Byte le16_to_cpu #define EF4Byte le32_to_cpu /* * Read LE data from memory to host byte order */ #define ReadLE4Byte(_ptr) le32_to_cpu(*((u32 *)(_ptr))) #define ReadLE2Byte(_ptr) le16_to_cpu(*((u16 *)(_ptr))) #define ReadLE1Byte(_ptr) (*((u8 *)(_ptr))) /* * Read BE data from memory to host byte order */ #define ReadBEE4Byte(_ptr) be32_to_cpu(*((u32 *)(_ptr))) #define ReadBE2Byte(_ptr) be16_to_cpu(*((u16 *)(_ptr))) #define ReadBE1Byte(_ptr) (*((u8 *)(_ptr))) /* * Write host byte order data to memory in LE order */ #define WriteLE4Byte(_ptr, _val) ((*((u32 *)(_ptr))) = cpu_to_le32(_val)) #define WriteLE2Byte(_ptr, _val) ((*((u16 *)(_ptr))) = cpu_to_le16(_val)) #define WriteLE1Byte(_ptr, _val) ((*((u8 *)(_ptr))) = ((u8)(_val))) /* * Write host byte order data to memory in BE order */ #define WriteBE4Byte(_ptr, _val) ((*((u32 *)(_ptr))) = cpu_to_be32(_val)) #define WriteBE2Byte(_ptr, _val) ((*((u16 *)(_ptr))) = cpu_to_be16(_val)) #define WriteBE1Byte(_ptr, _val) ((*((u8 *)(_ptr))) = ((u8)(_val))) /* * Return 4-byte value in host byte ordering from 4-byte pointer in litten-endian system. */ #define LE_P4BYTE_TO_HOST_4BYTE(__pStart) (le32_to_cpu(*((u32 *)(__pStart)))) #define LE_P2BYTE_TO_HOST_2BYTE(__pStart) (le16_to_cpu(*((u16 *)(__pStart)))) #define LE_P1BYTE_TO_HOST_1BYTE(__pStart) ((*((u8 *)(__pStart)))) /* * Return 4-byte value in host byte ordering from 4-byte pointer in big-endian system. */ #define BE_P4BYTE_TO_HOST_4BYTE(__pStart) (be32_to_cpu(*((u32 *)(__pStart)))) #define BE_P2BYTE_TO_HOST_2BYTE(__pStart) (be16_to_cpu(*((u16 *)(__pStart)))) #define BE_P1BYTE_TO_HOST_1BYTE(__pStart) ((*((u8 *)(__pStart)))) /* * Translate subfield (continuous bits in little-endian) of 4-byte value in LE byte to * 4-byte value in host byte ordering. */ #define LE_BITS_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ ((LE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_32(__BitLen)) #define LE_BITS_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ ((LE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_16(__BitLen)) #define LE_BITS_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ ((LE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_8(__BitLen)) /* * Translate subfield (continuous bits in big-endian) of 4-byte value in BE byte to * 4-byte value in host byte ordering. */ #define BE_BITS_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ ((BE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_32(__BitLen)) #define BE_BITS_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ ((BE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_16(__BitLen)) #define BE_BITS_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ ((BE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset)) & BIT_LEN_MASK_8(__BitLen)) /* * Mask subfield (continuous bits in little-endian) of 4-byte value in LE byte oredering * and return the result in 4-byte value in host byte ordering. */ #define LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ (LE_P4BYTE_TO_HOST_4BYTE(__pStart) & (~BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen))) #define LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ (LE_P2BYTE_TO_HOST_2BYTE(__pStart) & (~BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen))) #define LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ (LE_P1BYTE_TO_HOST_1BYTE(__pStart) & ((u8)(~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen)))) /* * Mask subfield (continuous bits in big-endian) of 4-byte value in BE byte oredering * and return the result in 4-byte value in host byte ordering. */ #define BE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ (BE_P4BYTE_TO_HOST_4BYTE(__pStart) & (~BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen))) #define BE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ (BE_P2BYTE_TO_HOST_2BYTE(__pStart) & (~BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen))) #define BE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ (BE_P1BYTE_TO_HOST_1BYTE(__pStart) & (~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen))) /* * Set subfield of little-endian 4-byte value to specified value. */ #define SET_BITS_TO_LE_4BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ u8 __offset = __BitOffset, __len = __BitLen; \ if (__offset == 0 && __len == 32) \ WriteLE4Byte(__pStart, __Value); \ else { \ WriteLE4Byte(__pStart, \ LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ | \ ((((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset)) \ ); \ } \ } while (0) #define SET_BITS_TO_LE_2BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ WriteLE2Byte(__pStart, \ LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ | \ ((((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << (__BitOffset)) \ ); \ } while (0) #define SET_BITS_TO_LE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ u8 __offset = __BitOffset; u8 __len = __BitLen; \ if (__offset == 0 && __len == 8) \ WriteLE1Byte(__pStart, __Value); \ else { \ WriteLE1Byte(__pStart, \ LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __len) \ | \ ((((u8)__Value) & BIT_LEN_MASK_8(__len)) << (__BitOffset)) \ ); \ } \ } while (0) /* * Set subfield of big-endian 4-byte value to specified value. */ #define SET_BITS_TO_BE_4BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ if (__BitOffset == 0 && __BitLen == 32) \ WriteBE4Byte(__pStart, __Value); \ else { \ WriteBE4Byte(__pStart, \ BE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ | \ ((((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset)) \ ); \ } \ } while (0) #define SET_BITS_TO_BE_2BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ if (__BitOffset == 0 && __BitLen == 16) \ WriteBE2Byte(__pStart, __Value); \ else { \ WriteBE2Byte(__pStart, \ BE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ | \ ((((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << (__BitOffset)) \ ); \ } \ } while (0) #define SET_BITS_TO_BE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \ do { \ if (__BitOffset == 0 && __BitLen == 8) \ WriteBE1Byte(__pStart, __Value); \ else { \ WriteBE1Byte(__pStart, \ BE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ | \ ((((u8)__Value) & BIT_LEN_MASK_8(__BitLen)) << (__BitOffset)) \ ); \ } \ } while (0) #endif /*_PLTFM_OPS_NONE_H_*/