/* * Copyright 2010 Rockchip Electronics S.LSI Co. LTD * * Licensed under the Apache License, Versdrm 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITDRMS OF ANY KIND, either express or implied. * See the License for the specific language governing permissdrms and * limitatdrms under the License. */ #define MODULE_TAG "mpp_dma_heap" #include #include #include #include #include #include #include "os_mem.h" #include "allocator_dma_heap.h" #include "mpp_env.h" #include "mpp_mem.h" #include "mpp_lock.h" #include "mpp_debug.h" #include "mpp_common.h" #include "mpp_thread.h" #include "mpp_runtime.h" #define DMA_HEAP_VALID_FD_FLAGS (O_CLOEXEC | O_ACCMODE) #define DMA_HEAP_VALID_HEAP_FLAGS (0) struct dma_heap_allocation_data { RK_U64 len; RK_U32 fd; RK_U32 fd_flags; RK_U64 heap_flags; }; #define DMA_HEAP_IOC_MAGIC 'H' #define DMA_HEAP_IOCTL_ALLOC _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data) static RK_U32 dma_heap_debug = 0; #define DMA_HEAP_OPS (0x00000001) #define DMA_HEAP_DEVICE (0x00000002) #define DMA_HEAP_IOCTL (0x00000004) #define dma_heap_dbg(flag, fmt, ...) _mpp_dbg(dma_heap_debug, flag, fmt, ## __VA_ARGS__) #define dma_heap_dbg_f(flag, fmt, ...) _mpp_dbg_f(dma_heap_debug, flag, fmt, ## __VA_ARGS__) #define dma_heap_dbg_ops(fmt, ...) dma_heap_dbg(DMA_HEAP_OPS, fmt, ## __VA_ARGS__) #define dma_heap_dbg_dev(fmt, ...) dma_heap_dbg(DMA_HEAP_DEVICE, fmt, ## __VA_ARGS__) typedef struct { RK_U32 alignment; RK_S32 device; RK_U32 flags; } allocator_ctx_dmaheap; typedef enum DmaHeapType_e { DMA_HEAP_CMA = (1 << 0), DMA_HEAP_CACHABLE = (1 << 1), DMA_HEAP_DMA32 = (1 << 2), DMA_HEAP_TYPE_MASK = DMA_HEAP_CMA | DMA_HEAP_CACHABLE | DMA_HEAP_DMA32, DMA_HEAP_TYPE_NB, } DmaHeapType; static const char *heap_names[] = { "system-uncached", /* 0 - default */ "cma-uncached", /* 1 - DMA_HEAP_CMA */ "system", /* 2 - DMA_HEAP_CACHABLE */ "cma", /* 3 - DMA_HEAP_CACHABLE | DMA_HEAP_CMA */ "system-uncached-dma32", /* 4 - DMA_HEAP_DMA32 */ "cma-uncached", /* 5 - DMA_HEAP_DMA32 | DMA_HEAP_CMA */ "system-dma32", /* 6 - DMA_HEAP_DMA32 | DMA_HEAP_CACHABLE */ "cma", /* 7 - DMA_HEAP_DMA32 | DMA_HEAP_CACHABLE | DMA_HEAP_CMA */ }; static int heap_fds[DMA_HEAP_TYPE_NB]; static pthread_once_t dma_heap_once = PTHREAD_ONCE_INIT; static spinlock_t dma_heap_lock; static int dma_heap_alloc(int fd, size_t len, RK_S32 *dmabuf_fd, RK_U32 flags) { int ret; struct dma_heap_allocation_data data = { .len = len, .fd_flags = O_RDWR | O_CLOEXEC, .heap_flags = flags, }; memset(&data, 0, sizeof(data)); data.len = len; data.fd_flags = O_RDWR | O_CLOEXEC; data.heap_flags = 0; // heap_flags should be set to 0 ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data); if (ret < 0) { mpp_err("ioctl alloc failed for %s\n", strerror(errno)); return ret; } dma_heap_dbg(DMA_HEAP_IOCTL, "ioctl alloc get fd %d\n", data.fd); *dmabuf_fd = data.fd; return ret; } static void heap_fds_init(void) { memset(heap_fds, -1, sizeof(heap_fds)); mpp_spinlock_init(&dma_heap_lock); } static int heap_fd_open(DmaHeapType type) { mpp_assert(type < DMA_HEAP_TYPE_NB); mpp_spinlock_lock(&dma_heap_lock); if (heap_fds[type] <= 0) { static const char *heap_path = "/dev/dma_heap/"; char name[64]; int fd; snprintf(name, sizeof(name) - 1, "%s%s", heap_path, heap_names[type]); fd = open(name, O_RDONLY | O_CLOEXEC); // read permission is enough if (fd <= 0) mpp_err("dma-heap open %s %s\n", name, strerror(errno)); mpp_assert(fd > 0); dma_heap_dbg(DMA_HEAP_DEVICE, "open dma heap dev %s fd %d\n", name, fd); heap_fds[type] = fd; } mpp_spinlock_unlock(&dma_heap_lock); return heap_fds[type]; } static MPP_RET os_allocator_dma_heap_open(void **ctx, MppAllocatorCfg *cfg) { allocator_ctx_dmaheap *p; DmaHeapType type = 0; RK_S32 fd; mpp_env_get_u32("dma_heap_debug", &dma_heap_debug, 0); pthread_once(&dma_heap_once, heap_fds_init); if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } *ctx = NULL; if (cfg->flags & (MPP_BUFFER_FLAGS_CONTIG >> 16)) type |= DMA_HEAP_CMA; if (cfg->flags & (MPP_BUFFER_FLAGS_CACHABLE >> 16)) type |= DMA_HEAP_CACHABLE; if (cfg->flags & (MPP_BUFFER_FLAGS_DMA32 >> 16)) type |= DMA_HEAP_DMA32; fd = heap_fd_open(type); if (fd < 0) { mpp_err_f("open dma heap type %x failed!\n", type); return MPP_ERR_UNKNOW; } p = mpp_malloc(allocator_ctx_dmaheap, 1); if (NULL == p) { close(fd); mpp_err_f("failed to allocate context\n"); return MPP_ERR_MALLOC; } else { /* * default drm use cma, do nothing here */ p->alignment = cfg->alignment; p->flags = cfg->flags; p->device = fd; *ctx = p; } dma_heap_dbg_ops("dev %d open heap type %x:%x\n", fd, cfg->flags, type); return MPP_OK; } static MPP_RET os_allocator_dma_heap_alloc(void *ctx, MppBufferInfo *info) { MPP_RET ret = MPP_OK; allocator_ctx_dmaheap *p = NULL; if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; ret = dma_heap_alloc(p->device, info->size, (RK_S32 *)&info->fd, p->flags); dma_heap_dbg_ops("dev %d alloc %3d size %d\n", p->device, info->fd, info->size); if (ret) { mpp_err_f("dma_heap_alloc failed ret %d\n", ret); return ret; } info->ptr = NULL; return ret; } static MPP_RET os_allocator_dma_heap_import(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p = (allocator_ctx_dmaheap *)ctx; RK_S32 fd_ext = data->fd; MPP_RET ret = MPP_OK; mpp_assert(fd_ext > 0); data->fd = dup(fd_ext); data->ptr = NULL; dma_heap_dbg_ops("dev %d import %3d -> %3d\n", p->device, fd_ext, data->fd); mpp_assert(data->fd > 0); return ret; } static MPP_RET os_allocator_dma_heap_free(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p = NULL; MPP_RET ret = MPP_OK; if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; dma_heap_dbg_ops("dev %d free %3d size %d ptr %p\n", p->device, data->fd, data->size, data->ptr); if (data->ptr) { munmap(data->ptr, data->size); data->ptr = NULL; } close(data->fd); return ret; } static MPP_RET os_allocator_dma_heap_close(void *ctx) { int ret; allocator_ctx_dmaheap *p; if (NULL == ctx) { mpp_err("os_allocator_close doesn't accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; dma_heap_dbg_ops("dev %d close", p->device); ret = close(p->device); mpp_free(p); if (ret < 0) return (MPP_RET) - errno; return MPP_OK; } static MPP_RET os_allocator_dma_heap_mmap(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p; MPP_RET ret = MPP_OK; if (NULL == ctx) { mpp_err("os_allocator_close do not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; if (NULL == ctx) return MPP_ERR_NULL_PTR; if (NULL == data->ptr) { int flags = PROT_READ; if (fcntl(data->fd, F_GETFL) & O_RDWR) flags |= PROT_WRITE; data->ptr = mmap(NULL, data->size, flags, MAP_SHARED, data->fd, 0); if (data->ptr == MAP_FAILED) { mpp_err("mmap failed: %s\n", strerror(errno)); data->ptr = NULL; return -errno; } dma_heap_dbg_ops("dev %d mmap %3d ptr %p (%s)\n", p->device, data->fd, data->ptr, flags & PROT_WRITE ? "RDWR" : "RDONLY"); } return ret; } os_allocator allocator_dma_heap = { .type = MPP_BUFFER_TYPE_DMA_HEAP, .open = os_allocator_dma_heap_open, .close = os_allocator_dma_heap_close, .alloc = os_allocator_dma_heap_alloc, .free = os_allocator_dma_heap_free, .import = os_allocator_dma_heap_import, .release = os_allocator_dma_heap_free, .mmap = os_allocator_dma_heap_mmap, };