160 lines
4.6 KiB
Python
Raw Normal View History

2025-05-10 21:58:58 +08:00
import numpy as np
import cv2
import os
import urllib
import tarfile
import shutil
import traceback
import time
import sys
from rknn.api import RKNN
PB_FILE = './inception_v3_quant_frozen.pb'
RKNN_MODEL_PATH = './inception_v3_quant_frozen.rknn'
INPUTS = ['input']
OUTPUTS = ['InceptionV3/Logits/SpatialSqueeze']
IMG_PATH = './goldfish_299x299.jpg'
INPUT_SIZE = 299
def show_outputs(outputs):
output = outputs[0][0]
output_sorted = sorted(output, reverse=True)
top5_str = 'inception_v3\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):
if (i + j) >= 5:
break
if value > 0:
topi = '{}: {}\n'.format(index[j], value)
else:
topi = '-1: 0.0\n'
top5_str += topi
print(top5_str)
def readable_speed(speed):
speed_bytes = float(speed)
speed_kbytes = speed_bytes / 1024
if speed_kbytes > 1024:
speed_mbytes = speed_kbytes / 1024
if speed_mbytes > 1024:
speed_gbytes = speed_mbytes / 1024
return "{:.2f} GB/s".format(speed_gbytes)
else:
return "{:.2f} MB/s".format(speed_mbytes)
else:
return "{:.2f} KB/s".format(speed_kbytes)
def show_progress(blocknum, blocksize, totalsize):
speed = (blocknum * blocksize) / (time.time() - start_time)
speed_str = " Speed: {}".format(readable_speed(speed))
recv_size = blocknum * blocksize
f = sys.stdout
progress = (recv_size / totalsize)
progress_str = "{:.2f}%".format(progress * 100)
n = round(progress * 50)
s = ('#' * n).ljust(50, '-')
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
f.flush()
f.write('\r\n')
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# If inception_v3_quant_frozen.pb does not exist, download it.
# Download address:
# https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
if not os.path.exists(PB_FILE):
print('--> Download {}'.format(PB_FILE))
url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz'
download_file = 'inception_v3_quant.tgz'
try:
start_time = time.time()
urllib.request.urlretrieve(url, download_file, show_progress)
except:
print('Download {} failed.'.format(download_file))
print(traceback.format_exc())
exit(-1)
try:
tar = tarfile.open(download_file)
target_dir = os.path.splitext(download_file)[0]
if os.path.isdir(target_dir):
pass
else:
os.mkdir(target_dir)
tar.extractall(target_dir)
tar.close()
except:
print('Extract {} failed.'.format(download_file))
exit(-1)
pb_file = os.path.join(target_dir, PB_FILE)
if os.path.exists(pb_file):
shutil.copyfile(pb_file, './inception_v3_quant_frozen.pb')
shutil.rmtree(target_dir)
os.remove(download_file)
print('done')
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[104, 117, 123], std_values=[128, 128, 128])
print('done')
# Load model
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb=PB_FILE,
inputs=INPUTS,
outputs=OUTPUTS,
input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]])
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn(RKNN_MODEL_PATH)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread(IMG_PATH)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
np.save('./tensorflow_inception_v3_qat_0.npy', outputs[0])
x = outputs[0]
output = np.exp(x)/np.sum(np.exp(x))
outputs = [output]
show_outputs(outputs)
print('done')
rknn.release()