898 lines
25 KiB
C
Raw Permalink Normal View History

2025-05-10 21:58:58 +08:00
/*
* Rockchip isp1 driver
*
* Copyright (C) 2017 Rockchip Electronics Co., Ltd.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <dt-bindings/soc/rockchip-system-status.h>
#include <soc/rockchip/rockchip-system-status.h>
#include "common.h"
#include "isp_ispp.h"
#include "regs.h"
#include "rkisp.h"
#include "version.h"
#define RKISP_VERNO_LEN 10
int rkisp_debug;
module_param_named(debug, rkisp_debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
bool rkisp_monitor;
module_param_named(monitor, rkisp_monitor, bool, 0644);
MODULE_PARM_DESC(monitor, "rkisp abnormal restart monitor");
static bool rkisp_clk_dbg;
module_param_named(clk_dbg, rkisp_clk_dbg, bool, 0644);
MODULE_PARM_DESC(clk_dbg, "rkisp clk set by user");
static char rkisp_version[RKISP_VERNO_LEN];
module_param_string(version, rkisp_version, RKISP_VERNO_LEN, 0444);
MODULE_PARM_DESC(version, "version number");
u64 rkisp_debug_reg = 0xFFFFFFFFFLL;
module_param_named(debug_reg, rkisp_debug_reg, ullong, 0644);
MODULE_PARM_DESC(debug_reg, "rkisp debug register");
static unsigned int rkisp_wait_line;
module_param_named(wait_line, rkisp_wait_line, uint, 0644);
MODULE_PARM_DESC(wait_line, "rkisp wait line to buf done early");
static DEFINE_MUTEX(rkisp_dev_mutex);
static LIST_HEAD(rkisp_device_list);
void rkisp_set_clk_rate(struct clk *clk, unsigned long rate)
{
if (rkisp_clk_dbg)
return;
clk_set_rate(clk, rate);
}
static int __maybe_unused __rkisp_clr_unready_dev(void)
{
struct rkisp_device *isp_dev;
mutex_lock(&rkisp_dev_mutex);
list_for_each_entry(isp_dev, &rkisp_device_list, list)
v4l2_async_notifier_clr_unready_dev(&isp_dev->notifier);
mutex_unlock(&rkisp_dev_mutex);
return 0;
}
static int rkisp_clr_unready_dev_param_set(const char *val, const struct kernel_param *kp)
{
#ifdef MODULE
__rkisp_clr_unready_dev();
#endif
return 0;
}
module_param_call(clr_unready_dev, rkisp_clr_unready_dev_param_set, NULL, NULL, 0200);
MODULE_PARM_DESC(clr_unready_dev, "clear unready devices");
/**************************** pipeline operations *****************************/
static int __isp_pipeline_prepare(struct rkisp_pipeline *p,
struct media_entity *me)
{
struct rkisp_device *dev = container_of(p, struct rkisp_device, pipe);
struct v4l2_subdev *sd;
int i;
p->num_subdevs = 0;
memset(p->subdevs, 0, sizeof(p->subdevs));
if (!(dev->isp_inp & (INP_CSI | INP_DVP | INP_LVDS)))
return 0;
while (1) {
struct media_pad *pad = NULL;
/* Find remote source pad */
for (i = 0; i < me->num_pads; i++) {
struct media_pad *spad = &me->pads[i];
if (!(spad->flags & MEDIA_PAD_FL_SINK))
continue;
pad = rkisp_media_entity_remote_pad(spad);
if (pad)
break;
}
if (!pad)
break;
sd = media_entity_to_v4l2_subdev(pad->entity);
if (sd != &dev->isp_sdev.sd)
p->subdevs[p->num_subdevs++] = sd;
me = &sd->entity;
if (me->num_pads == 1)
break;
}
if (!p->num_subdevs)
return -EINVAL;
return 0;
}
static int __isp_pipeline_s_isp_clk(struct rkisp_pipeline *p)
{
struct rkisp_device *dev = container_of(p, struct rkisp_device, pipe);
struct rkisp_hw_dev *hw_dev = dev->hw_dev;
u32 w = hw_dev->max_in.w ? hw_dev->max_in.w : dev->isp_sdev.in_frm.width;
struct v4l2_subdev *sd;
struct v4l2_ctrl *ctrl;
u64 data_rate;
int i;
if (dev->isp_inp & (INP_RAWRD0 | INP_RAWRD1 | INP_RAWRD2 | INP_CIF)) {
for (i = 0; i < hw_dev->num_clk_rate_tbl; i++) {
if (w <= hw_dev->clk_rate_tbl[i].refer_data)
break;
}
if (!hw_dev->is_single)
i++;
if (i > hw_dev->num_clk_rate_tbl - 1)
i = hw_dev->num_clk_rate_tbl - 1;
goto end;
}
if (dev->isp_inp == INP_DMARX_ISP && dev->hw_dev->clks[0]) {
rkisp_set_clk_rate(hw_dev->clks[0], 400 * 1000000UL);
return 0;
}
/* find the subdev of active sensor */
sd = p->subdevs[0];
for (i = 0; i < p->num_subdevs; i++) {
sd = p->subdevs[i];
if (sd->entity.function == MEDIA_ENT_F_CAM_SENSOR)
break;
}
if (i == p->num_subdevs) {
v4l2_warn(&dev->v4l2_dev, "No active sensor\n");
return -EPIPE;
}
ctrl = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
v4l2_warn(&dev->v4l2_dev, "No pixel rate control in subdev\n");
return -EPIPE;
}
/* calculate data rate */
data_rate = v4l2_ctrl_g_ctrl_int64(ctrl) *
dev->isp_sdev.in_fmt.bus_width;
data_rate >>= 3;
do_div(data_rate, 1000 * 1000);
/* increase 25% margin */
data_rate += data_rate >> 2;
/* compare with isp clock adjustment table */
for (i = 0; i < hw_dev->num_clk_rate_tbl; i++)
if (data_rate <= hw_dev->clk_rate_tbl[i].clk_rate)
break;
if (i == hw_dev->num_clk_rate_tbl)
i--;
end:
/* set isp clock rate */
rkisp_set_clk_rate(hw_dev->clks[0], hw_dev->clk_rate_tbl[i].clk_rate * 1000000UL);
dev_dbg(hw_dev->dev, "set isp clk = %luHz\n", clk_get_rate(hw_dev->clks[0]));
return 0;
}
static int rkisp_pipeline_open(struct rkisp_pipeline *p,
struct media_entity *me,
bool prepare)
{
int ret;
struct rkisp_device *dev = container_of(p, struct rkisp_device, pipe);
if (WARN_ON(!p || !me))
return -EINVAL;
if (atomic_inc_return(&p->power_cnt) > 1)
return 0;
/* go through media graphic and get subdevs */
if (prepare) {
ret = __isp_pipeline_prepare(p, me);
if (ret < 0)
return ret;
}
ret = __isp_pipeline_s_isp_clk(p);
if (ret < 0)
return ret;
if (dev->isp_inp & (INP_CSI | INP_RAWRD0 | INP_RAWRD1 | INP_RAWRD2 | INP_CIF))
rkisp_csi_config_patch(dev);
return 0;
}
static int rkisp_pipeline_close(struct rkisp_pipeline *p)
{
atomic_dec(&p->power_cnt);
return 0;
}
/*
* stream-on order: isp_subdev, mipi dphy, sensor
* stream-off order: mipi dphy, sensor, isp_subdev
*/
static int rkisp_pipeline_set_stream(struct rkisp_pipeline *p, bool on)
{
struct rkisp_device *dev = container_of(p, struct rkisp_device, pipe);
int i, ret;
if ((on && atomic_inc_return(&p->stream_cnt) > 1) ||
(!on && atomic_dec_return(&p->stream_cnt) > 0))
return 0;
if (on) {
if (dev->vs_irq >= 0)
enable_irq(dev->vs_irq);
rockchip_set_system_status(SYS_STATUS_ISP);
v4l2_subdev_call(&dev->isp_sdev.sd, video, s_stream, true);
/* phy -> sensor */
for (i = 0; i < p->num_subdevs; ++i) {
ret = v4l2_subdev_call(p->subdevs[i], video, s_stream, on);
if (on && ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
goto err_stream_off;
}
} else {
if (dev->hw_dev->monitor.is_en) {
dev->hw_dev->monitor.is_en = 0;
dev->hw_dev->monitor.state = ISP_STOP;
if (!completion_done(&dev->hw_dev->monitor.cmpl))
complete(&dev->hw_dev->monitor.cmpl);
}
/* sensor -> phy */
for (i = p->num_subdevs - 1; i >= 0; --i)
v4l2_subdev_call(p->subdevs[i], video, s_stream, on);
if (dev->vs_irq >= 0)
disable_irq(dev->vs_irq);
v4l2_subdev_call(&dev->isp_sdev.sd, video, s_stream, false);
rockchip_clear_system_status(SYS_STATUS_ISP);
}
return 0;
err_stream_off:
for (--i; i >= 0; --i)
v4l2_subdev_call(p->subdevs[i], video, s_stream, false);
v4l2_subdev_call(&dev->isp_sdev.sd, video, s_stream, false);
rockchip_clear_system_status(SYS_STATUS_ISP);
return ret;
}
/***************************** media controller *******************************/
/* See http://opensource.rock-chips.com/wiki_Rockchip-isp1 for Topology */
static int rkisp_create_links(struct rkisp_device *dev)
{
unsigned int s, pad;
int ret = 0;
/* sensor links(or mipi-phy) */
for (s = 0; s < dev->num_sensors; ++s) {
struct rkisp_sensor_info *sensor = &dev->sensors[s];
u32 type = sensor->sd->entity.function;
bool en = s ? 0 : MEDIA_LNK_FL_ENABLED;
for (pad = 0; pad < sensor->sd->entity.num_pads; pad++)
if (sensor->sd->entity.pads[pad].flags & MEDIA_PAD_FL_SOURCE)
break;
if (pad == sensor->sd->entity.num_pads) {
dev_err(dev->dev, "failed to find src pad for %s\n",
sensor->sd->name);
return -ENXIO;
}
/* sensor link -> isp */
if (type == MEDIA_ENT_F_CAM_SENSOR) {
dev->isp_inp = INP_DVP;
ret = media_create_pad_link(&sensor->sd->entity, pad,
&dev->isp_sdev.sd.entity, RKISP_ISP_PAD_SINK, en);
} else if (type == MEDIA_ENT_F_PROC_VIDEO_COMPOSER) {
dev->isp_inp = INP_CIF;
ret = media_create_pad_link(&sensor->sd->entity, pad,
&dev->isp_sdev.sd.entity, RKISP_ISP_PAD_SINK, en);
} else {
v4l2_subdev_call(sensor->sd, video,
g_mbus_config, &sensor->mbus);
if (sensor->mbus.type == V4L2_MBUS_CCP2) {
/* mipi-phy lvds link -> isp */
dev->isp_inp = INP_LVDS;
ret = media_create_pad_link(&sensor->sd->entity, pad,
&dev->isp_sdev.sd.entity, RKISP_ISP_PAD_SINK, en);
} else {
/* mipi-phy link -> csi -> isp */
dev->isp_inp = INP_CSI;
ret = media_create_pad_link(&sensor->sd->entity,
pad, &dev->csi_dev.sd.entity, CSI_SINK, en);
ret |= media_create_pad_link(&dev->csi_dev.sd.entity, CSI_SRC_CH0,
&dev->isp_sdev.sd.entity, RKISP_ISP_PAD_SINK, en);
dev->csi_dev.sink[0].linked = en;
dev->csi_dev.sink[0].index = BIT(0);
}
}
if (ret)
dev_err(dev->dev, "failed to create link for %s\n", sensor->sd->name);
}
return ret;
}
static int _set_pipeline_default_fmt(struct rkisp_device *dev)
{
struct v4l2_subdev *isp;
struct v4l2_subdev_format fmt;
struct v4l2_subdev_selection sel;
u32 width, height, code;
isp = &dev->isp_sdev.sd;
fmt = dev->active_sensor->fmt[0];
code = fmt.format.code;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.pad = RKISP_ISP_PAD_SINK;
/* isp input format information from sensor */
v4l2_subdev_call(isp, pad, set_fmt, NULL, &fmt);
rkisp_align_sensor_resolution(dev, &sel.r, false);
width = sel.r.width;
height = sel.r.height;
sel.target = V4L2_SEL_TGT_CROP;
sel.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sel.pad = RKISP_ISP_PAD_SINK;
/* image resolution processed by isp */
v4l2_subdev_call(isp, pad, set_selection, NULL, &sel);
/* change fmt&size for RKISP_ISP_PAD_SOURCE_PATH */
if ((code & RKISP_MEDIA_BUS_FMT_MASK) == RKISP_MEDIA_BUS_FMT_BAYER)
fmt.format.code = MEDIA_BUS_FMT_YUYV8_2X8;
sel.r.left = 0;
sel.r.top = 0;
fmt.format.width = width;
fmt.format.height = height;
fmt.pad = RKISP_ISP_PAD_SOURCE_PATH;
sel.pad = RKISP_ISP_PAD_SOURCE_PATH;
v4l2_subdev_call(isp, pad, set_fmt, NULL, &fmt);
v4l2_subdev_call(isp, pad, set_selection, NULL, &sel);
/* change fmt&size of MP/SP */
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_MP,
width, height, V4L2_PIX_FMT_NV12);
if (dev->isp_ver != ISP_V10_1)
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_SP,
width, height, V4L2_PIX_FMT_NV12);
if ((dev->isp_ver == ISP_V20 || dev->isp_ver == ISP_V21) &&
dev->isp_inp == INP_CSI) {
width = dev->active_sensor->fmt[1].format.width;
height = dev->active_sensor->fmt[1].format.height;
code = dev->active_sensor->fmt[1].format.code;
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_DMATX0,
width, height, rkisp_mbus_pixelcode_to_v4l2(code));
width = dev->active_sensor->fmt[3].format.width;
height = dev->active_sensor->fmt[3].format.height;
code = dev->active_sensor->fmt[3].format.code;
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_DMATX2,
width, height, rkisp_mbus_pixelcode_to_v4l2(code));
width = dev->active_sensor->fmt[4].format.width;
height = dev->active_sensor->fmt[4].format.height;
code = dev->active_sensor->fmt[4].format.code;
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_DMATX3,
width, height, rkisp_mbus_pixelcode_to_v4l2(code));
}
if (dev->isp_ver == ISP_V20 && dev->isp_inp == INP_CSI) {
width = dev->active_sensor->fmt[2].format.width;
height = dev->active_sensor->fmt[2].format.height;
code = dev->active_sensor->fmt[2].format.code;
rkisp_set_stream_def_fmt(dev, RKISP_STREAM_DMATX1,
width, height, rkisp_mbus_pixelcode_to_v4l2(code));
}
return 0;
}
static int subdev_notifier_complete(struct v4l2_async_notifier *notifier)
{
struct rkisp_device *dev;
int ret;
dev = container_of(notifier, struct rkisp_device, notifier);
mutex_lock(&dev->media_dev.graph_mutex);
ret = rkisp_create_links(dev);
if (ret < 0)
goto unlock;
ret = v4l2_device_register_subdev_nodes(&dev->v4l2_dev);
if (ret < 0)
goto unlock;
ret = rkisp_update_sensor_info(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "update sensor failed\n");
goto unlock;
}
ret = _set_pipeline_default_fmt(dev);
if (ret < 0)
goto unlock;
v4l2_info(&dev->v4l2_dev, "Async subdev notifier completed\n");
unlock:
mutex_unlock(&dev->media_dev.graph_mutex);
return ret;
}
struct rkisp_async_subdev {
struct v4l2_async_subdev asd;
struct v4l2_mbus_config mbus;
};
static int subdev_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct rkisp_device *isp_dev = container_of(notifier,
struct rkisp_device, notifier);
struct rkisp_async_subdev *s_asd = container_of(asd,
struct rkisp_async_subdev, asd);
if (isp_dev->num_sensors == ARRAY_SIZE(isp_dev->sensors))
return -EBUSY;
isp_dev->sensors[isp_dev->num_sensors].mbus = s_asd->mbus;
isp_dev->sensors[isp_dev->num_sensors].sd = subdev;
++isp_dev->num_sensors;
v4l2_dbg(1, rkisp_debug, subdev, "Async registered subdev\n");
return 0;
}
static int rkisp_fwnode_parse(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd)
{
struct rkisp_async_subdev *rk_asd =
container_of(asd, struct rkisp_async_subdev, asd);
struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
/*
* MIPI sensor is linked with a mipi dphy and its media bus config can
* not be get in here
*/
if (vep->bus_type != V4L2_MBUS_BT656 &&
vep->bus_type != V4L2_MBUS_PARALLEL)
return 0;
rk_asd->mbus.flags = bus->flags;
rk_asd->mbus.type = vep->bus_type;
return 0;
}
static const struct v4l2_async_notifier_operations subdev_notifier_ops = {
.bound = subdev_notifier_bound,
.complete = subdev_notifier_complete,
};
static int isp_subdev_notifier(struct rkisp_device *isp_dev)
{
struct v4l2_async_notifier *ntf = &isp_dev->notifier;
struct device *dev = isp_dev->dev;
int ret;
ret = v4l2_async_notifier_parse_fwnode_endpoints(
dev, ntf, sizeof(struct rkisp_async_subdev),
rkisp_fwnode_parse);
if (ret < 0)
return ret;
if (!ntf->num_subdevs)
return -ENODEV; /* no endpoint */
ntf->ops = &subdev_notifier_ops;
return v4l2_async_notifier_register(&isp_dev->v4l2_dev, ntf);
}
/***************************** platform deive *******************************/
static int rkisp_register_platform_subdevs(struct rkisp_device *dev)
{
int ret;
ret = rkisp_register_isp_subdev(dev, &dev->v4l2_dev);
if (ret < 0)
return ret;
ret = rkisp_register_csi_subdev(dev, &dev->v4l2_dev);
if (ret < 0)
goto err_unreg_isp_subdev;
ret = rkisp_register_bridge_subdev(dev, &dev->v4l2_dev);
if (ret < 0)
goto err_unreg_csi_subdev;
ret = rkisp_register_stream_vdevs(dev);
if (ret < 0)
goto err_unreg_bridge_subdev;
ret = rkisp_register_dmarx_vdev(dev);
if (ret < 0)
goto err_unreg_stream_vdev;
ret = rkisp_register_stats_vdev(&dev->stats_vdev, &dev->v4l2_dev, dev);
if (ret < 0)
goto err_unreg_dmarx_vdev;
ret = rkisp_register_params_vdev(&dev->params_vdev, &dev->v4l2_dev, dev);
if (ret < 0)
goto err_unreg_stats_vdev;
ret = rkisp_register_luma_vdev(&dev->luma_vdev, &dev->v4l2_dev, dev);
if (ret < 0)
goto err_unreg_params_vdev;
ret = isp_subdev_notifier(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev,
"Failed to register subdev notifier(%d)\n", ret);
/* maybe use dmarx to input image */
ret = v4l2_device_register_subdev_nodes(&dev->v4l2_dev);
if (ret == 0)
return 0;
goto err_unreg_luma_vdev;
}
return 0;
err_unreg_luma_vdev:
rkisp_unregister_luma_vdev(&dev->luma_vdev);
err_unreg_params_vdev:
rkisp_unregister_params_vdev(&dev->params_vdev);
err_unreg_stats_vdev:
rkisp_unregister_stats_vdev(&dev->stats_vdev);
err_unreg_dmarx_vdev:
rkisp_unregister_dmarx_vdev(dev);
err_unreg_stream_vdev:
rkisp_unregister_stream_vdevs(dev);
err_unreg_bridge_subdev:
rkisp_unregister_bridge_subdev(dev);
err_unreg_csi_subdev:
rkisp_unregister_csi_subdev(dev);
err_unreg_isp_subdev:
rkisp_unregister_isp_subdev(dev);
return ret;
}
static int rkisp_vs_irq_parse(struct device *dev)
{
int ret;
int vs_irq;
unsigned long vs_irq_flags;
struct gpio_desc *vs_irq_gpio;
struct rkisp_device *isp_dev = dev_get_drvdata(dev);
/* this irq recevice the message of sensor vs from preisp */
isp_dev->vs_irq = -1;
vs_irq_gpio = devm_gpiod_get(dev, "vsirq", GPIOD_IN);
if (!IS_ERR(vs_irq_gpio)) {
vs_irq_flags = IRQF_TRIGGER_RISING |
IRQF_ONESHOT | IRQF_SHARED;
vs_irq = gpiod_to_irq(vs_irq_gpio);
if (vs_irq < 0) {
dev_err(dev, "GPIO to interrupt failed\n");
return vs_irq;
}
dev_info(dev, "register_irq: %d\n", vs_irq);
ret = devm_request_irq(dev,
vs_irq,
rkisp_vs_isr_handler,
vs_irq_flags,
"vs_irq_gpio_int",
dev);
if (ret) {
dev_err(dev, "devm_request_irq failed: %d\n", ret);
return ret;
} else {
disable_irq(vs_irq);
isp_dev->vs_irq = vs_irq;
isp_dev->vs_irq_gpio = vs_irq_gpio;
dev_info(dev, "vs_gpio_int interrupt is hooked\n");
}
}
return 0;
}
static const struct media_device_ops rkisp_media_ops = {
.link_notify = v4l2_pipeline_link_notify,
};
static int rkisp_get_reserved_mem(struct rkisp_device *isp_dev)
{
struct device *dev = isp_dev->dev;
struct device_node *np;
struct resource r;
int ret;
/* Get reserved memory region from Device-tree */
np = of_parse_phandle(dev->of_node, "memory-region-thunderboot", 0);
if (!np) {
dev_info(dev, "No memory-region-thunderboot specified\n");
return 0;
}
ret = of_address_to_resource(np, 0, &r);
if (ret) {
dev_err(dev, "No memory address assigned to the region\n");
return ret;
}
isp_dev->resmem_pa = r.start;
isp_dev->resmem_size = resource_size(&r);
isp_dev->resmem_addr = dma_map_single(dev, phys_to_virt(r.start),
sizeof(struct rkisp_thunderboot_resmem_head),
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(dev, isp_dev->resmem_addr);
isp_dev->is_thunderboot = true;
atomic_inc(&isp_dev->hw_dev->tb_ref);
dev_info(dev, "Allocated reserved memory, paddr: 0x%x\n",
(u32)isp_dev->resmem_pa);
return ret;
}
static int rkisp_plat_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct v4l2_device *v4l2_dev;
struct rkisp_device *isp_dev;
int i, ret;
sprintf(rkisp_version, "v%02x.%02x.%02x",
RKISP_DRIVER_VERSION >> 16,
(RKISP_DRIVER_VERSION & 0xff00) >> 8,
RKISP_DRIVER_VERSION & 0x00ff);
dev_info(dev, "rkisp driver version: %s\n", rkisp_version);
isp_dev = devm_kzalloc(dev, sizeof(*isp_dev), GFP_KERNEL);
if (!isp_dev)
return -ENOMEM;
isp_dev->sw_base_addr = devm_kzalloc(dev, RKISP_ISP_SW_MAX_SIZE, GFP_KERNEL);
if (!isp_dev->sw_base_addr)
return -ENOMEM;
dev_set_drvdata(dev, isp_dev);
isp_dev->dev = dev;
ret = rkisp_vs_irq_parse(dev);
if (ret)
return ret;
ret = rkisp_attach_hw(isp_dev);
if (ret)
return ret;
sprintf(isp_dev->media_dev.model, "%s%d",
DRIVER_NAME, isp_dev->dev_id);
if (isp_dev->hw_dev->is_thunderboot) {
ret = rkisp_get_reserved_mem(isp_dev);
if (ret)
return ret;
}
mutex_init(&isp_dev->apilock);
mutex_init(&isp_dev->iqlock);
atomic_set(&isp_dev->pipe.power_cnt, 0);
atomic_set(&isp_dev->pipe.stream_cnt, 0);
init_waitqueue_head(&isp_dev->sync_onoff);
isp_dev->pipe.open = rkisp_pipeline_open;
isp_dev->pipe.close = rkisp_pipeline_close;
isp_dev->pipe.set_stream = rkisp_pipeline_set_stream;
if (isp_dev->isp_ver == ISP_V20 || isp_dev->isp_ver == ISP_V21) {
atomic_set(&isp_dev->hdr.refcnt, 0);
for (i = 0; i < HDR_DMA_MAX; i++) {
INIT_LIST_HEAD(&isp_dev->hdr.q_tx[i]);
INIT_LIST_HEAD(&isp_dev->hdr.q_rx[i]);
}
}
strscpy(isp_dev->name, dev_name(dev), sizeof(isp_dev->name));
strscpy(isp_dev->media_dev.driver_name, isp_dev->name,
sizeof(isp_dev->media_dev.driver_name));
isp_dev->media_dev.dev = dev;
isp_dev->media_dev.ops = &rkisp_media_ops;
v4l2_dev = &isp_dev->v4l2_dev;
v4l2_dev->mdev = &isp_dev->media_dev;
strlcpy(v4l2_dev->name, isp_dev->name, sizeof(v4l2_dev->name));
v4l2_ctrl_handler_init(&isp_dev->ctrl_handler, 5);
v4l2_dev->ctrl_handler = &isp_dev->ctrl_handler;
ret = v4l2_device_register(isp_dev->dev, &isp_dev->v4l2_dev);
if (ret < 0) {
v4l2_err(v4l2_dev, "Failed to register v4l2 device:%d\n", ret);
return ret;
}
media_device_init(&isp_dev->media_dev);
ret = media_device_register(&isp_dev->media_dev);
if (ret < 0) {
v4l2_err(v4l2_dev, "Failed to register media device:%d\n", ret);
goto err_unreg_v4l2_dev;
}
/* create & register platefom subdev (from of_node) */
ret = rkisp_register_platform_subdevs(isp_dev);
if (ret < 0)
goto err_unreg_media_dev;
rkisp_wait_line = 0;
of_property_read_u32(dev->of_node, "wait-line", &rkisp_wait_line);
rkisp_proc_init(isp_dev);
mutex_lock(&rkisp_dev_mutex);
list_add_tail(&isp_dev->list, &rkisp_device_list);
mutex_unlock(&rkisp_dev_mutex);
pm_runtime_enable(dev);
if (isp_dev->hw_dev->is_thunderboot && isp_dev->is_thunderboot)
pm_runtime_get_noresume(isp_dev->hw_dev->dev);
isp_dev->is_probe_end = true;
return 0;
err_unreg_media_dev:
media_device_unregister(&isp_dev->media_dev);
err_unreg_v4l2_dev:
v4l2_device_unregister(&isp_dev->v4l2_dev);
return ret;
}
static int rkisp_plat_remove(struct platform_device *pdev)
{
struct rkisp_device *isp_dev = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
rkisp_proc_cleanup(isp_dev);
media_device_unregister(&isp_dev->media_dev);
v4l2_device_unregister(&isp_dev->v4l2_dev);
rkisp_unregister_luma_vdev(&isp_dev->luma_vdev);
rkisp_unregister_params_vdev(&isp_dev->params_vdev);
rkisp_unregister_stats_vdev(&isp_dev->stats_vdev);
rkisp_unregister_dmarx_vdev(isp_dev);
rkisp_unregister_stream_vdevs(isp_dev);
rkisp_unregister_bridge_subdev(isp_dev);
rkisp_unregister_csi_subdev(isp_dev);
rkisp_unregister_isp_subdev(isp_dev);
media_device_cleanup(&isp_dev->media_dev);
return 0;
}
static int __maybe_unused rkisp_runtime_suspend(struct device *dev)
{
struct rkisp_device *isp_dev = dev_get_drvdata(dev);
int ret;
mutex_lock(&isp_dev->hw_dev->dev_lock);
ret = pm_runtime_put_sync(isp_dev->hw_dev->dev);
mutex_unlock(&isp_dev->hw_dev->dev_lock);
return (ret > 0) ? 0 : ret;
}
static int __maybe_unused rkisp_runtime_resume(struct device *dev)
{
struct rkisp_device *isp_dev = dev_get_drvdata(dev);
int ret;
isp_dev->cap_dev.wait_line = rkisp_wait_line;
mutex_lock(&isp_dev->hw_dev->dev_lock);
ret = pm_runtime_get_sync(isp_dev->hw_dev->dev);
mutex_unlock(&isp_dev->hw_dev->dev_lock);
return (ret > 0) ? 0 : ret;
}
#ifndef MODULE
static int __init rkisp_clr_unready_dev(void)
{
__rkisp_clr_unready_dev();
return 0;
}
late_initcall_sync(rkisp_clr_unready_dev);
#endif
static const struct dev_pm_ops rkisp_plat_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(rkisp_runtime_suspend, rkisp_runtime_resume, NULL)
};
static const struct of_device_id rkisp_plat_of_match[] = {
{
.compatible = "rockchip,rkisp-vir",
}, {
.compatible = "rockchip,rv1126-rkisp-vir",
},
{},
};
struct platform_driver rkisp_plat_drv = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(rkisp_plat_of_match),
.pm = &rkisp_plat_pm_ops,
},
.probe = rkisp_plat_probe,
.remove = rkisp_plat_remove,
};
MODULE_AUTHOR("Rockchip Camera/ISP team");
MODULE_DESCRIPTION("Rockchip ISP platform driver");
MODULE_LICENSE("Dual BSD/GPL");