2025-05-10 21:49:39 +08:00

1092 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* u_audio.c -- interface to USB gadget "ALSA sound card" utilities
*
* Copyright (C) 2016
* Author: Ruslan Bilovol <ruslan.bilovol@gmail.com>
*
* Sound card implementation was cut-and-pasted with changes
* from f_uac2.c and has:
* Copyright (C) 2011
* Yadwinder Singh (yadi.brar01@gmail.com)
* Jaswinder Singh (jaswinder.singh@linaro.org)
*/
#include <linux/module.h>
#include <linux/usb/audio.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "u_audio.h"
#define BUFF_SIZE_MAX (PAGE_SIZE * 16)
#define PRD_SIZE_MAX PAGE_SIZE
#define MIN_PERIODS 4
#define CLK_PPM_GROUP_SIZE 20
static struct class *audio_class;
struct uac_req {
struct uac_rtd_params *pp; /* parent param */
struct usb_request *req;
};
/* Runtime data params for one stream */
struct uac_rtd_params {
struct snd_uac_chip *uac; /* parent chip */
bool ep_enabled; /* if the ep is enabled */
struct snd_pcm_substream *ss;
/* Ring buffer */
ssize_t hw_ptr;
void *rbuf;
unsigned max_psize; /* MaxPacketSize of endpoint */
struct uac_req *ureq;
spinlock_t lock;
};
struct snd_uac_chip {
struct g_audio *audio_dev;
struct uac_rtd_params p_prm;
struct uac_rtd_params c_prm;
struct snd_card *card;
struct snd_pcm *pcm;
/* timekeeping for the playback endpoint */
unsigned int p_interval;
unsigned int p_residue;
/* pre-calculated values for playback iso completion */
unsigned int p_pktsize;
unsigned int p_pktsize_residue;
unsigned int p_framesize;
};
static const struct snd_pcm_hardware uac_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER
| SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID
| SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX,
.buffer_bytes_max = BUFF_SIZE_MAX,
.period_bytes_max = PRD_SIZE_MAX,
.periods_min = MIN_PERIODS,
};
static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req)
{
unsigned pending;
unsigned long flags, flags2;
unsigned int hw_ptr;
int status = req->status;
struct uac_req *ur = req->context;
struct snd_pcm_substream *substream;
struct snd_pcm_runtime *runtime;
struct uac_rtd_params *prm = ur->pp;
struct snd_uac_chip *uac = prm->uac;
/* i/f shutting down */
if (!prm->ep_enabled) {
usb_ep_free_request(ep, req);
return;
}
if (req->status == -ESHUTDOWN)
return;
/*
* We can't really do much about bad xfers.
* Afterall, the ISOCH xfers could fail legitimately.
*/
if (status)
pr_debug("%s: iso_complete status(%d) %d/%d\n",
__func__, status, req->actual, req->length);
substream = prm->ss;
/* Do nothing if ALSA isn't active */
if (!substream)
goto exit;
snd_pcm_stream_lock_irqsave(substream, flags2);
runtime = substream->runtime;
if (!runtime || !snd_pcm_running(substream)) {
snd_pcm_stream_unlock_irqrestore(substream, flags2);
goto exit;
}
spin_lock_irqsave(&prm->lock, flags);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/*
* For each IN packet, take the quotient of the current data
* rate and the endpoint's interval as the base packet size.
* If there is a residue from this division, add it to the
* residue accumulator.
*/
req->length = uac->p_pktsize;
uac->p_residue += uac->p_pktsize_residue;
/*
* Whenever there are more bytes in the accumulator than we
* need to add one more sample frame, increase this packet's
* size and decrease the accumulator.
*/
if (uac->p_residue / uac->p_interval >= uac->p_framesize) {
req->length += uac->p_framesize;
uac->p_residue -= uac->p_framesize *
uac->p_interval;
}
req->actual = req->length;
}
hw_ptr = prm->hw_ptr;
spin_unlock_irqrestore(&prm->lock, flags);
/* Pack USB load in ALSA ring buffer */
pending = runtime->dma_bytes - hw_ptr;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (unlikely(pending < req->actual)) {
memcpy(req->buf, runtime->dma_area + hw_ptr, pending);
memcpy(req->buf + pending, runtime->dma_area,
req->actual - pending);
} else {
memcpy(req->buf, runtime->dma_area + hw_ptr,
req->actual);
}
} else {
if (unlikely(pending < req->actual)) {
memcpy(runtime->dma_area + hw_ptr, req->buf, pending);
memcpy(runtime->dma_area, req->buf + pending,
req->actual - pending);
} else {
memcpy(runtime->dma_area + hw_ptr, req->buf,
req->actual);
}
}
spin_lock_irqsave(&prm->lock, flags);
/* update hw_ptr after data is copied to memory */
prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes;
hw_ptr = prm->hw_ptr;
spin_unlock_irqrestore(&prm->lock, flags);
snd_pcm_stream_unlock_irqrestore(substream, flags2);
if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual)
snd_pcm_period_elapsed(substream);
exit:
if (usb_ep_queue(ep, req, GFP_ATOMIC))
dev_err(uac->card->dev, "%d Error!\n", __LINE__);
}
static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct uac_rtd_params *prm;
struct g_audio *audio_dev;
struct uac_params *params;
unsigned long flags;
int err = 0;
audio_dev = uac->audio_dev;
params = &audio_dev->params;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
spin_lock_irqsave(&prm->lock, flags);
/* Reset */
prm->hw_ptr = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
prm->ss = substream;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
prm->ss = NULL;
break;
default:
err = -EINVAL;
}
spin_unlock_irqrestore(&prm->lock, flags);
/* Clear buffer after Play stops */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss)
memset(prm->rbuf, 0, prm->max_psize * params->req_number);
return err;
}
static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct uac_rtd_params *prm;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
prm = &uac->p_prm;
else
prm = &uac->c_prm;
return bytes_to_frames(substream->runtime, prm->hw_ptr);
}
static int uac_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
static int uac_pcm_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int uac_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct g_audio *audio_dev = uac->audio_dev;
struct uac_params *params;
int p_ssize, c_ssize;
int p_srate, c_srate;
int p_chmask, c_chmask;
params = &audio_dev->params;
p_ssize = params->p_ssize;
c_ssize = params->c_ssize;
p_srate = params->p_srate_active;
c_srate = params->c_srate_active;
p_chmask = params->p_chmask;
c_chmask = params->c_chmask;
uac->p_residue = 0;
runtime->hw = uac_pcm_hardware;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
spin_lock_init(&uac->p_prm.lock);
runtime->hw.rate_min = p_srate;
switch (p_ssize) {
case 3:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE;
break;
case 4:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE;
break;
default:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE;
break;
}
runtime->hw.channels_min = num_channels(p_chmask);
runtime->hw.period_bytes_min = 2 * uac->p_prm.max_psize
/ runtime->hw.periods_min;
} else {
spin_lock_init(&uac->c_prm.lock);
runtime->hw.rate_min = c_srate;
switch (c_ssize) {
case 3:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE;
break;
case 4:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE;
break;
default:
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE;
break;
}
runtime->hw.channels_min = num_channels(c_chmask);
runtime->hw.period_bytes_min = 2 * uac->c_prm.max_psize
/ runtime->hw.periods_min;
}
runtime->hw.rate_max = runtime->hw.rate_min;
runtime->hw.channels_max = runtime->hw.channels_min;
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
return 0;
}
static int uac_pcm_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 324000;
return 0;
}
static int uac_pcm_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_uac_chip *uac = snd_kcontrol_chip(kcontrol);
struct g_audio *audio_dev = uac->audio_dev;
struct uac_params *params = &audio_dev->params;
if (kcontrol->private_value == SNDRV_PCM_STREAM_CAPTURE)
ucontrol->value.integer.value[0] = params->c_srate_active;
else if (kcontrol->private_value == SNDRV_PCM_STREAM_PLAYBACK)
ucontrol->value.integer.value[0] = params->p_srate_active;
else
return -EINVAL;
return 0;
}
static struct snd_kcontrol_new uac_pcm_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Capture Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = uac_pcm_rate_info,
.get = uac_pcm_rate_get,
.private_value = SNDRV_PCM_STREAM_CAPTURE,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Playback Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = uac_pcm_rate_info,
.get = uac_pcm_rate_get,
.private_value = SNDRV_PCM_STREAM_PLAYBACK,
},
};
/* ALSA cries without these function pointers */
static int uac_pcm_null(struct snd_pcm_substream *substream)
{
return 0;
}
static const struct snd_pcm_ops uac_pcm_ops = {
.open = uac_pcm_open,
.close = uac_pcm_null,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = uac_pcm_hw_params,
.hw_free = uac_pcm_hw_free,
.trigger = uac_pcm_trigger,
.pointer = uac_pcm_pointer,
.prepare = uac_pcm_null,
};
static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep)
{
struct snd_uac_chip *uac = prm->uac;
struct g_audio *audio_dev;
struct uac_params *params;
int i;
if (!prm->ep_enabled)
return;
audio_dev = uac->audio_dev;
params = &audio_dev->params;
for (i = 0; i < params->req_number; i++) {
if (prm->ureq[i].req) {
if (usb_ep_dequeue(ep, prm->ureq[i].req))
usb_ep_free_request(ep, prm->ureq[i].req);
/*
* If usb_ep_dequeue() cannot successfully dequeue the
* request, the request will be freed by the completion
* callback.
*/
prm->ureq[i].req = NULL;
}
}
prm->ep_enabled = false;
if (usb_ep_disable(ep))
dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
}
static struct snd_kcontrol *u_audio_get_ctl(struct g_audio *audio_dev,
const char *name)
{
struct snd_ctl_elem_id elem_id;
memset(&elem_id, 0, sizeof(elem_id));
elem_id.iface = SNDRV_CTL_ELEM_IFACE_PCM;
strlcpy(elem_id.name, name, sizeof(elem_id.name));
return snd_ctl_find_id(audio_dev->uac->card, &elem_id);
}
int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate)
{
struct snd_kcontrol *ctl = u_audio_get_ctl(audio_dev, "Capture Rate");
struct uac_params *params = &audio_dev->params;
int i;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (params->c_srate[i] == srate) {
audio_dev->usb_state[SET_SAMPLE_RATE_OUT] = true;
schedule_work(&audio_dev->work);
params->c_srate_active = srate;
snd_ctl_notify(audio_dev->uac->card,
SNDRV_CTL_EVENT_MASK_VALUE, &ctl->id);
return 0;
}
if (params->c_srate[i] == 0)
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(u_audio_set_capture_srate);
static void u_audio_set_playback_pktsize(struct g_audio *audio_dev, int srate)
{
struct uac_params *params = &audio_dev->params;
struct snd_uac_chip *uac = audio_dev->uac;
struct usb_gadget *gadget = audio_dev->gadget;
const struct usb_endpoint_descriptor *ep_desc;
struct uac_rtd_params *prm;
unsigned int factor;
prm = &uac->p_prm;
/* set srate before starting playback, epin is not configured */
if (!prm->ep_enabled)
return;
ep_desc = audio_dev->in_ep->desc;
/* pre-calculate the playback endpoint's interval */
if (gadget->speed == USB_SPEED_FULL)
factor = 1000;
else
factor = 8000;
/* pre-compute some values for iso_complete() */
uac->p_framesize = params->p_ssize *
num_channels(params->p_chmask);
uac->p_interval = factor / (1 << (ep_desc->bInterval - 1));
uac->p_pktsize = min_t(unsigned int,
uac->p_framesize *
(params->p_srate_active / uac->p_interval),
prm->max_psize);
if (uac->p_pktsize < prm->max_psize)
uac->p_pktsize_residue = uac->p_framesize *
(params->p_srate_active % uac->p_interval);
else
uac->p_pktsize_residue = 0;
}
int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate)
{
struct snd_kcontrol *ctl = u_audio_get_ctl(audio_dev, "Playback Rate");
struct uac_params *params = &audio_dev->params;
int i;
for (i = 0; i < UAC_MAX_RATES; i++) {
if (params->p_srate[i] == srate) {
audio_dev->usb_state[SET_SAMPLE_RATE_IN] = true;
schedule_work(&audio_dev->work);
params->p_srate_active = srate;
u_audio_set_playback_pktsize(audio_dev, srate);
snd_ctl_notify(audio_dev->uac->card,
SNDRV_CTL_EVENT_MASK_VALUE, &ctl->id);
return 0;
}
if (params->p_srate[i] == 0)
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(u_audio_set_playback_srate);
int u_audio_start_capture(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct usb_gadget *gadget = audio_dev->gadget;
struct device *dev = &gadget->dev;
struct usb_request *req;
struct usb_ep *ep;
struct uac_rtd_params *prm;
struct uac_params *params = &audio_dev->params;
int req_len, i;
/*
* For better compatibility on some PC Hosts which
* failed to send SetInterface(AltSet=0) to stop
* capture last time. It needs to stop capture
* prior to start capture next time.
*/
if (audio_dev->stream_state[STATE_OUT])
u_audio_stop_capture(audio_dev);
audio_dev->usb_state[SET_INTERFACE_OUT] = true;
audio_dev->stream_state[STATE_OUT] = true;
schedule_work(&audio_dev->work);
ep = audio_dev->out_ep;
prm = &uac->c_prm;
config_ep_by_speed(gadget, &audio_dev->func, ep);
req_len = prm->max_psize;
prm->ep_enabled = true;
usb_ep_enable(ep);
for (i = 0; i < params->req_number; i++) {
if (!prm->ureq[i].req) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req == NULL)
return -ENOMEM;
prm->ureq[i].req = req;
prm->ureq[i].pp = prm;
req->zero = 0;
req->context = &prm->ureq[i];
req->length = req_len;
req->complete = u_audio_iso_complete;
req->buf = prm->rbuf + i * prm->max_psize;
}
if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC))
dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
}
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_start_capture);
void u_audio_stop_capture(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
free_ep(&uac->c_prm, audio_dev->out_ep);
audio_dev->usb_state[SET_INTERFACE_OUT] = true;
audio_dev->stream_state[STATE_OUT] = false;
schedule_work(&audio_dev->work);
}
EXPORT_SYMBOL_GPL(u_audio_stop_capture);
int u_audio_start_playback(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
struct usb_gadget *gadget = audio_dev->gadget;
struct device *dev = audio_dev->device;
struct usb_request *req;
struct usb_ep *ep;
struct uac_rtd_params *prm;
struct uac_params *params = &audio_dev->params;
int req_len, i;
/*
* For better compatibility on some PC Hosts which
* failed to send SetInterface(AltSet=0) to stop
* playback last time. It needs to stop playback
* prior to start playback next time.
*/
if (audio_dev->stream_state[STATE_IN])
u_audio_stop_playback(audio_dev);
audio_dev->usb_state[SET_INTERFACE_IN] = true;
audio_dev->stream_state[STATE_IN] = true;
schedule_work(&audio_dev->work);
dev_dbg(dev, "start playback with rate %d\n", params->p_srate_active);
ep = audio_dev->in_ep;
prm = &uac->p_prm;
config_ep_by_speed(gadget, &audio_dev->func, ep);
prm->ep_enabled = true;
usb_ep_enable(ep);
u_audio_set_playback_pktsize(audio_dev, params->p_srate_active);
req_len = uac->p_pktsize;
uac->p_residue = 0;
for (i = 0; i < params->req_number; i++) {
if (!prm->ureq[i].req) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req == NULL)
return -ENOMEM;
prm->ureq[i].req = req;
prm->ureq[i].pp = prm;
req->zero = 0;
req->context = &prm->ureq[i];
req->length = req_len;
req->complete = u_audio_iso_complete;
req->buf = prm->rbuf + i * prm->max_psize;
}
if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC))
dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
}
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_start_playback);
void u_audio_stop_playback(struct g_audio *audio_dev)
{
struct snd_uac_chip *uac = audio_dev->uac;
free_ep(&uac->p_prm, audio_dev->in_ep);
audio_dev->usb_state[SET_INTERFACE_IN] = true;
audio_dev->stream_state[STATE_IN] = false;
schedule_work(&audio_dev->work);
}
EXPORT_SYMBOL_GPL(u_audio_stop_playback);
int u_audio_fu_set_cmd(struct usb_audio_control *con, u8 cmd, int value)
{
struct g_audio *audio_dev = (struct g_audio *)con->context;
struct uac_params *params = &audio_dev->params;
switch (cmd) {
case UAC_SET_CUR:
if (!strncmp(con->name, "Capture Mute", 12)) {
params->c_mute = value;
audio_dev->usb_state[SET_MUTE_OUT] = true;
} else if (!strncmp(con->name, "Capture Volume", 14)) {
params->c_volume = value;
audio_dev->usb_state[SET_VOLUME_OUT] = true;
} else if (!strncmp(con->name, "Playback Mute", 13)) {
params->p_mute = value;
audio_dev->usb_state[SET_MUTE_IN] = true;
} else if (!strncmp(con->name, "Playback Volume", 15)) {
params->p_volume = value;
audio_dev->usb_state[SET_VOLUME_IN] = true;
}
break;
case UAC_SET_RES:
/* fall through */
default:
return 0;
}
con->data[cmd] = value;
schedule_work(&audio_dev->work);
return 0;
}
EXPORT_SYMBOL_GPL(u_audio_fu_set_cmd);
int u_audio_fu_get_cmd(struct usb_audio_control *con, u8 cmd)
{
struct g_audio *audio_dev = (struct g_audio *)con->context;
dev_dbg(audio_dev->device, "GET_CMD con %s cmd %d data %d\n",
con->name, cmd, (int16_t)con->data[cmd]);
return con->data[cmd];
}
EXPORT_SYMBOL_GPL(u_audio_fu_get_cmd);
static void g_audio_work(struct work_struct *data)
{
struct g_audio *audio = container_of(data, struct g_audio, work);
struct uac_params *params = &audio->params;
char *uac_event[4] = { NULL, NULL, NULL, NULL };
char str[19];
signed short volume;
int i;
for (i = 0; i < SET_USB_STATE_MAX; i++) {
if (!audio->usb_state[i])
continue;
switch (i) {
case SET_INTERFACE_OUT:
uac_event[0] = "USB_STATE=SET_INTERFACE";
uac_event[1] = "STREAM_DIRECTION=OUT";
uac_event[2] = audio->stream_state[STATE_OUT] ?
"STREAM_STATE=ON" : "STREAM_STATE=OFF";
break;
case SET_INTERFACE_IN:
uac_event[0] = "USB_STATE=SET_INTERFACE";
uac_event[1] = "STREAM_DIRECTION=IN";
uac_event[2] = audio->stream_state[STATE_IN] ?
"STREAM_STATE=ON" : "STREAM_STATE=OFF";
break;
case SET_SAMPLE_RATE_OUT:
uac_event[0] = "USB_STATE=SET_SAMPLE_RATE";
uac_event[1] = "STREAM_DIRECTION=OUT";
snprintf(str, sizeof(str), "SAMPLE_RATE=%d",
params->c_srate_active);
uac_event[2] = str;
break;
case SET_SAMPLE_RATE_IN:
uac_event[0] = "USB_STATE=SET_SAMPLE_RATE";
uac_event[1] = "STREAM_DIRECTION=IN";
snprintf(str, sizeof(str), "SAMPLE_RATE=%d",
params->p_srate_active);
uac_event[2] = str;
break;
case SET_MUTE_OUT:
uac_event[0] = "USB_STATE=SET_MUTE";
uac_event[1] = "STREAM_DIRECTION=OUT";
snprintf(str, sizeof(str), "MUTE=%d", params->c_mute);
uac_event[2] = str;
break;
case SET_MUTE_IN:
uac_event[0] = "USB_STATE=SET_MUTE";
uac_event[1] = "STREAM_DIRECTION=IN";
snprintf(str, sizeof(str), "MUTE=%d", params->p_mute);
uac_event[2] = str;
break;
case SET_VOLUME_OUT:
uac_event[0] = "USB_STATE=SET_VOLUME";
uac_event[1] = "STREAM_DIRECTION=OUT";
volume = (signed short)params->c_volume;
volume /= UAC_VOLUME_RES;
snprintf(str, sizeof(str), "VOLUME=%d%%", volume + 50);
uac_event[2] = str;
break;
case SET_VOLUME_IN:
uac_event[0] = "USB_STATE=SET_VOLUME";
uac_event[1] = "STREAM_DIRECTION=IN";
volume = (signed short)params->p_volume;
volume /= UAC_VOLUME_RES;
snprintf(str, sizeof(str), "VOLUME=%d%%", volume + 50);
uac_event[2] = str;
break;
case SET_AUDIO_CLK:
uac_event[0] = "USB_STATE=SET_AUDIO_CLK";
snprintf(str, sizeof(str), "PPM=%d", params->ppm);
uac_event[1] = str;
default:
break;
}
audio->usb_state[i] = false;
kobject_uevent_env(&audio->device->kobj, KOBJ_CHANGE,
uac_event);
dev_dbg(audio->device, "%s: sent uac uevent %s %s %s\n",
__func__, uac_event[0], uac_event[1], uac_event[2]);
}
}
static void ppm_calculate_work(struct work_struct *data)
{
struct g_audio *g_audio = container_of(data, struct g_audio,
ppm_work.work);
struct usb_gadget *gadget = g_audio->gadget;
uint32_t frame_number, fn_msec, clk_msec;
struct frame_number_data *fn = g_audio->fn;
uint64_t time_now, time_msec_tmp;
int32_t ppm;
static int32_t ppms[CLK_PPM_GROUP_SIZE];
static int32_t ppm_sum;
int32_t cnt = fn->second % CLK_PPM_GROUP_SIZE;
time_now = ktime_get_raw();
frame_number = gadget->ops->get_frame(gadget);
if (g_audio->fn->time_last &&
time_now - g_audio->fn->time_last > 1500000000ULL)
dev_warn(g_audio->device, "PPM work scheduled too slow!\n");
g_audio->fn->time_last = time_now;
/*
* If usb is disconnected, the controller will not receive the
* SoF signal and frame number will be invalid. Because we can't
* get accurate time of disconnect and whether the gadget will be
* plugged into the same host next time or not. We must clear all
* statistics.
*/
if (gadget->state != USB_STATE_CONFIGURED) {
memset(g_audio->fn, 0, sizeof(*g_audio->fn));
dev_dbg(g_audio->device, "Disconnect. frame number is cleared\n");
goto out;
}
/* Fist statistic to record begin frame number and system time */
if (!g_audio->fn->second++) {
g_audio->fn->time_begin = g_audio->fn->time_last;
g_audio->fn->fn_begin = frame_number;
g_audio->fn->fn_last = frame_number;
goto out;
}
/*
* For DWC3 Controller, only 13 bits is used to store frame(micro)
* number. In other words, the frame number will overflow at most
* 2.047 seconds. We add another registor fn_overflow the record
* total frame number.
*/
if (frame_number <= g_audio->fn->fn_last)
g_audio->fn->fn_overflow++;
g_audio->fn->fn_last = frame_number;
if (!g_audio->fn->fn_overflow)
goto out;
/* The lower 3 bits represent micro number frame, we don't need it */
fn_msec = (((fn->fn_overflow - 1) << 14) +
(BIT(14) + fn->fn_last - fn->fn_begin) + BIT(2)) >> 3;
time_msec_tmp = fn->time_last - fn->time_begin + 500000ULL;
do_div(time_msec_tmp, 1000000U);
clk_msec = (uint32_t)time_msec_tmp;
/*
* According to the definition of ppm:
* host_clk = (1 + ppm / 1000000) * gadget_clk
* we can get:
* ppm = (host_clk - gadget_clk) * 1000000 / gadget_clk
*/
ppm = (fn_msec > clk_msec) ?
(fn_msec - clk_msec) * 1000000L / clk_msec :
-((clk_msec - fn_msec) * 1000000L / clk_msec);
ppm_sum = ppm_sum - ppms[cnt] + ppm;
ppms[cnt] = ppm;
dev_dbg(g_audio->device,
"frame %u msec %u ppm_calc %d ppm_avage(%d) %d\n",
fn_msec, clk_msec, ppm, CLK_PPM_GROUP_SIZE,
ppm_sum / CLK_PPM_GROUP_SIZE);
/*
* We calculate the average of ppm over a period of time. If the
* latest frame number is too far from the average, no event will
* be sent.
*/
if (abs(ppm_sum / CLK_PPM_GROUP_SIZE - ppm) < 3) {
ppm = ppm_sum > 0 ?
(ppm_sum + CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE :
(ppm_sum - CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE;
if (ppm != g_audio->params.ppm) {
g_audio->params.ppm = ppm;
g_audio->usb_state[SET_AUDIO_CLK] = true;
schedule_work(&g_audio->work);
}
}
out:
schedule_delayed_work(&g_audio->ppm_work, 1 * HZ);
}
int g_audio_setup(struct g_audio *g_audio, const char *pcm_name,
const char *card_name)
{
struct snd_uac_chip *uac;
struct snd_card *card;
struct snd_pcm *pcm;
struct uac_params *params;
int p_chmask, c_chmask;
int err;
int i;
if (!g_audio)
return -EINVAL;
uac = kzalloc(sizeof(*uac), GFP_KERNEL);
if (!uac)
return -ENOMEM;
g_audio->uac = uac;
uac->audio_dev = g_audio;
params = &g_audio->params;
p_chmask = params->p_chmask;
c_chmask = params->c_chmask;
g_audio->fn = kzalloc(sizeof(*g_audio->fn), GFP_KERNEL);
if (!g_audio->fn) {
err = -ENOMEM;
goto fail;
}
if (c_chmask) {
struct uac_rtd_params *prm = &uac->c_prm;
uac->c_prm.uac = uac;
prm->max_psize = g_audio->out_ep_maxpsize;
prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req),
GFP_KERNEL);
if (!prm->ureq) {
err = -ENOMEM;
goto fail;
}
prm->rbuf = kcalloc(params->req_number, prm->max_psize,
GFP_KERNEL);
if (!prm->rbuf) {
prm->max_psize = 0;
err = -ENOMEM;
goto fail;
}
}
if (p_chmask) {
struct uac_rtd_params *prm = &uac->p_prm;
uac->p_prm.uac = uac;
prm->max_psize = g_audio->in_ep_maxpsize;
prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req),
GFP_KERNEL);
if (!prm->ureq) {
err = -ENOMEM;
goto fail;
}
prm->rbuf = kcalloc(params->req_number, prm->max_psize,
GFP_KERNEL);
if (!prm->rbuf) {
prm->max_psize = 0;
err = -ENOMEM;
goto fail;
}
}
/* Choose any slot, with no id */
err = snd_card_new(&g_audio->gadget->dev,
-1, NULL, THIS_MODULE, 0, &card);
if (err < 0)
goto fail;
uac->card = card;
/*
* Create first PCM device
* Create a substream only for non-zero channel streams
*/
err = snd_pcm_new(uac->card, pcm_name, 0,
p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm);
if (err < 0)
goto snd_fail;
strlcpy(pcm->name, pcm_name, sizeof(pcm->name));
pcm->private_data = uac;
uac->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops);
strlcpy(card->driver, card_name, sizeof(card->driver));
strlcpy(card->shortname, card_name, sizeof(card->shortname));
sprintf(card->longname, "%s %i", card_name, card->dev->id);
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL), 0, BUFF_SIZE_MAX);
/* Add controls */
for (i = 0; i < ARRAY_SIZE(uac_pcm_controls); i++) {
err = snd_ctl_add(card,
snd_ctl_new1(&uac_pcm_controls[i], uac));
if (err < 0)
goto snd_fail;
}
err = snd_card_register(card);
if (err < 0)
goto snd_fail;
g_audio->device = device_create(audio_class, NULL, MKDEV(0, 0), NULL,
"%s", g_audio->uac->card->longname);
if (IS_ERR(g_audio->device)) {
err = PTR_ERR(g_audio->device);
goto snd_fail;
}
INIT_WORK(&g_audio->work, g_audio_work);
INIT_DELAYED_WORK(&g_audio->ppm_work, ppm_calculate_work);
ppm_calculate_work(&g_audio->ppm_work.work);
if (!err)
return 0;
snd_fail:
snd_card_free(card);
fail:
kfree(uac->p_prm.ureq);
kfree(uac->c_prm.ureq);
kfree(uac->p_prm.rbuf);
kfree(uac->c_prm.rbuf);
kfree(uac);
kfree(g_audio->fn);
return err;
}
EXPORT_SYMBOL_GPL(g_audio_setup);
void g_audio_cleanup(struct g_audio *g_audio)
{
struct snd_uac_chip *uac;
struct snd_card *card;
if (!g_audio || !g_audio->uac)
return;
cancel_work_sync(&g_audio->work);
cancel_delayed_work_sync(&g_audio->ppm_work);
device_destroy(g_audio->device->class, g_audio->device->devt);
g_audio->device = NULL;
uac = g_audio->uac;
card = uac->card;
if (card)
snd_card_free(card);
free_ep(&uac->c_prm, g_audio->out_ep);
free_ep(&uac->p_prm, g_audio->in_ep);
kfree(uac->p_prm.ureq);
kfree(uac->c_prm.ureq);
kfree(uac->p_prm.rbuf);
kfree(uac->c_prm.rbuf);
kfree(uac);
kfree(g_audio->fn);
}
EXPORT_SYMBOL_GPL(g_audio_cleanup);
static int __init u_audio_init(void)
{
int err = 0;
audio_class = class_create(THIS_MODULE, "u_audio");
if (IS_ERR(audio_class)) {
err = PTR_ERR(audio_class);
audio_class = NULL;
}
return err;
}
module_init(u_audio_init);
static void __exit u_audio_exit(void)
{
if (audio_class)
class_destroy(audio_class);
}
module_exit(u_audio_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities");
MODULE_AUTHOR("Ruslan Bilovol");