2025-05-10 21:49:39 +08:00

313 lines
8.0 KiB
C

/*
*/
#include <linux/blkdev.h>
#include <linux/rwsem.h>
#include <linux/sched/debug.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include "rtmutex_common.h"
/*
* RT-specific reader/writer semaphores
*
* down_write()
* 1) Lock sem->rtmutex
* 2) Remove the reader BIAS to force readers into the slow path
* 3) Wait until all readers have left the critical region
* 4) Mark it write locked
*
* up_write()
* 1) Remove the write locked marker
* 2) Set the reader BIAS so readers can use the fast path again
* 3) Unlock sem->rtmutex to release blocked readers
*
* down_read()
* 1) Try fast path acquisition (reader BIAS is set)
* 2) Take sem->rtmutex.wait_lock which protects the writelocked flag
* 3) If !writelocked, acquire it for read
* 4) If writelocked, block on sem->rtmutex
* 5) unlock sem->rtmutex, goto 1)
*
* up_read()
* 1) Try fast path release (reader count != 1)
* 2) Wake the writer waiting in down_write()#3
*
* down_read()#3 has the consequence, that rw semaphores on RT are not writer
* fair, but writers, which should be avoided in RT tasks (think mmap_sem),
* are subject to the rtmutex priority/DL inheritance mechanism.
*
* It's possible to make the rw semaphores writer fair by keeping a list of
* active readers. A blocked writer would force all newly incoming readers to
* block on the rtmutex, but the rtmutex would have to be proxy locked for one
* reader after the other. We can't use multi-reader inheritance because there
* is no way to support that with SCHED_DEADLINE. Implementing the one by one
* reader boosting/handover mechanism is a major surgery for a very dubious
* value.
*
* The risk of writer starvation is there, but the pathological use cases
* which trigger it are not necessarily the typical RT workloads.
*/
void __rwsem_init(struct rw_semaphore *sem, const char *name,
struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/*
* Make sure we are not reinitializing a held semaphore:
*/
debug_check_no_locks_freed((void *)sem, sizeof(*sem));
lockdep_init_map(&sem->dep_map, name, key, 0);
#endif
atomic_set(&sem->readers, READER_BIAS);
}
EXPORT_SYMBOL(__rwsem_init);
int __down_read_trylock(struct rw_semaphore *sem)
{
int r, old;
/*
* Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
* set.
*/
for (r = atomic_read(&sem->readers); r < 0;) {
old = atomic_cmpxchg(&sem->readers, r, r + 1);
if (likely(old == r))
return 1;
r = old;
}
return 0;
}
static int __sched __down_read_common(struct rw_semaphore *sem, int state)
{
struct rt_mutex *m = &sem->rtmutex;
struct rt_mutex_waiter waiter;
int ret;
if (__down_read_trylock(sem))
return 0;
/*
* If rt_mutex blocks, the function sched_submit_work will not call
* blk_schedule_flush_plug (because tsk_is_pi_blocked would be true).
* We must call blk_schedule_flush_plug here, if we don't call it,
* a deadlock in I/O may happen.
*/
if (unlikely(blk_needs_flush_plug(current)))
blk_schedule_flush_plug(current);
might_sleep();
raw_spin_lock_irq(&m->wait_lock);
/*
* Allow readers as long as the writer has not completely
* acquired the semaphore for write.
*/
if (atomic_read(&sem->readers) != WRITER_BIAS) {
atomic_inc(&sem->readers);
raw_spin_unlock_irq(&m->wait_lock);
return 0;
}
/*
* Call into the slow lock path with the rtmutex->wait_lock
* held, so this can't result in the following race:
*
* Reader1 Reader2 Writer
* down_read()
* down_write()
* rtmutex_lock(m)
* swait()
* down_read()
* unlock(m->wait_lock)
* up_read()
* swake()
* lock(m->wait_lock)
* sem->writelocked=true
* unlock(m->wait_lock)
*
* up_write()
* sem->writelocked=false
* rtmutex_unlock(m)
* down_read()
* down_write()
* rtmutex_lock(m)
* swait()
* rtmutex_lock(m)
*
* That would put Reader1 behind the writer waiting on
* Reader2 to call up_read() which might be unbound.
*/
rt_mutex_init_waiter(&waiter, false);
ret = rt_mutex_slowlock_locked(m, state, NULL, RT_MUTEX_MIN_CHAINWALK,
NULL, &waiter);
/*
* The slowlock() above is guaranteed to return with the rtmutex (for
* ret = 0) is now held, so there can't be a writer active. Increment
* the reader count and immediately drop the rtmutex again.
* For ret != 0 we don't hold the rtmutex and need unlock the wait_lock.
* We don't own the lock then.
*/
if (!ret)
atomic_inc(&sem->readers);
raw_spin_unlock_irq(&m->wait_lock);
if (!ret)
__rt_mutex_unlock(m);
debug_rt_mutex_free_waiter(&waiter);
return ret;
}
void __down_read(struct rw_semaphore *sem)
{
int ret;
ret = __down_read_common(sem, TASK_UNINTERRUPTIBLE);
WARN_ON_ONCE(ret);
}
int __down_read_interruptible(struct rw_semaphore *sem)
{
int ret;
ret = __down_read_common(sem, TASK_INTERRUPTIBLE);
if (likely(!ret))
return ret;
WARN_ONCE(ret != -EINTR, "Unexpected state: %d\n", ret);
return -EINTR;
}
int __down_read_killable(struct rw_semaphore *sem)
{
int ret;
ret = __down_read_common(sem, TASK_KILLABLE);
if (likely(!ret))
return ret;
WARN_ONCE(ret != -EINTR, "Unexpected state: %d\n", ret);
return -EINTR;
}
void __up_read(struct rw_semaphore *sem)
{
struct rt_mutex *m = &sem->rtmutex;
struct task_struct *tsk;
/*
* sem->readers can only hit 0 when a writer is waiting for the
* active readers to leave the critical region.
*/
if (!atomic_dec_and_test(&sem->readers))
return;
raw_spin_lock_irq(&m->wait_lock);
/*
* Wake the writer, i.e. the rtmutex owner. It might release the
* rtmutex concurrently in the fast path (due to a signal), but to
* clean up the rwsem it needs to acquire m->wait_lock. The worst
* case which can happen is a spurious wakeup.
*/
tsk = rt_mutex_owner(m);
if (tsk)
wake_up_process(tsk);
raw_spin_unlock_irq(&m->wait_lock);
}
static void __up_write_unlock(struct rw_semaphore *sem, int bias,
unsigned long flags)
{
struct rt_mutex *m = &sem->rtmutex;
atomic_add(READER_BIAS - bias, &sem->readers);
raw_spin_unlock_irqrestore(&m->wait_lock, flags);
__rt_mutex_unlock(m);
}
static int __sched __down_write_common(struct rw_semaphore *sem, int state)
{
struct rt_mutex *m = &sem->rtmutex;
unsigned long flags;
/* Take the rtmutex as a first step */
if (__rt_mutex_lock_state(m, state))
return -EINTR;
/* Force readers into slow path */
atomic_sub(READER_BIAS, &sem->readers);
might_sleep();
set_current_state(state);
for (;;) {
raw_spin_lock_irqsave(&m->wait_lock, flags);
/* Have all readers left the critical region? */
if (!atomic_read(&sem->readers)) {
atomic_set(&sem->readers, WRITER_BIAS);
__set_current_state(TASK_RUNNING);
raw_spin_unlock_irqrestore(&m->wait_lock, flags);
return 0;
}
if (signal_pending_state(state, current)) {
__set_current_state(TASK_RUNNING);
__up_write_unlock(sem, 0, flags);
return -EINTR;
}
raw_spin_unlock_irqrestore(&m->wait_lock, flags);
if (atomic_read(&sem->readers) != 0) {
schedule();
set_current_state(state);
}
}
}
void __sched __down_write(struct rw_semaphore *sem)
{
__down_write_common(sem, TASK_UNINTERRUPTIBLE);
}
int __sched __down_write_killable(struct rw_semaphore *sem)
{
return __down_write_common(sem, TASK_KILLABLE);
}
int __down_write_trylock(struct rw_semaphore *sem)
{
struct rt_mutex *m = &sem->rtmutex;
unsigned long flags;
if (!__rt_mutex_trylock(m))
return 0;
atomic_sub(READER_BIAS, &sem->readers);
raw_spin_lock_irqsave(&m->wait_lock, flags);
if (!atomic_read(&sem->readers)) {
atomic_set(&sem->readers, WRITER_BIAS);
raw_spin_unlock_irqrestore(&m->wait_lock, flags);
return 1;
}
__up_write_unlock(sem, 0, flags);
return 0;
}
void __up_write(struct rw_semaphore *sem)
{
struct rt_mutex *m = &sem->rtmutex;
unsigned long flags;
raw_spin_lock_irqsave(&m->wait_lock, flags);
__up_write_unlock(sem, WRITER_BIAS, flags);
}
void __downgrade_write(struct rw_semaphore *sem)
{
struct rt_mutex *m = &sem->rtmutex;
unsigned long flags;
raw_spin_lock_irqsave(&m->wait_lock, flags);
/* Release it and account current as reader */
__up_write_unlock(sem, WRITER_BIAS - 1, flags);
}