346 lines
8.5 KiB
C
Raw Normal View History

2025-05-10 21:49:39 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include "check.h"
#include "rk.h"
/* rkpart_setup() parses into here */
static struct cmdline_rk_partition *partitions;
/* the command line passed to mtdpart_setupd() */
static char *cmdline;
static int cmdline_parsed;
/*
* Parse one partition definition for an rkpart. Since there can be many
* comma separated partition definitions, this function calls itself
* recursively until no more partition definitions are found. Nice side
* effect: the memory to keep the rk_partition structs and the names
* is allocated upon the last definition being found. At that point the
* syntax has been verified ok.
*/
static struct rk_partition *newpart(char *s,
char **retptr,
int *num_parts,
int this_part,
unsigned char **extra_mem_ptr,
int extra_mem_size)
{
struct rk_partition *parts;
sector_t size;
sector_t from = OFFSET_CONTINUOUS;
char *name;
int name_len;
unsigned char *extra_mem;
char delim;
/* fetch the partition size */
if (*s == '-')
{ /* assign all remaining space to this partition */
size = SIZE_REMAINING;
s++;
}
else
{
size = memparse(s, &s);
/* No sense support partition less than 8B */
if (size < ((PAGE_SIZE) >> 9))
{
printk(KERN_ERR ERRP "partition size too small (%llx)\n", (u64)size);
return NULL;
}
}
/* fetch partition name */
delim = 0;
/* check for from */
if (*s == '@')
{
s++;
from = memparse(s, &s);
}
/* now look for name */
if (*s == '(')
{
delim = ')';
}
if (delim)
{
char *p;
name = ++s;
p = strchr(name, delim);
if (!p)
{
printk(KERN_ERR ERRP "no closing %c found in partition name\n", delim);
return NULL;
}
name_len = p - name;
s = p + 1;
}
else
{
name = NULL;
name_len = 13; /* Partition_000 */
}
/* record name length for memory allocation later */
extra_mem_size += name_len + 1;
/* test if more partitions are following */
if (*s == ',')
{
if (size == SIZE_REMAINING)
{
printk(KERN_ERR ERRP "no partitions allowed after a fill-up partition\n");
return NULL;
}
/* more partitions follow, parse them */
parts = newpart(s + 1, &s, num_parts, this_part + 1,
&extra_mem, extra_mem_size);
if (!parts)
return NULL;
}
else
{ /* this is the last partition: allocate space for all */
int alloc_size;
*num_parts = this_part + 1;
alloc_size = *num_parts * sizeof(struct rk_partition) +
extra_mem_size;
parts = kzalloc(alloc_size, GFP_KERNEL);
if (!parts)
{
printk(KERN_ERR ERRP "out of memory\n");
return NULL;
}
extra_mem = (unsigned char *)(parts + *num_parts);
}
/* enter this partition (from will be calculated later if it is zero at this point) */
parts[this_part].size = size;
parts[this_part].from = from;
if (name)
{
strlcpy(extra_mem, name, name_len + 1);
}
else
{
sprintf(extra_mem, "Partition_%03d", this_part);
}
parts[this_part].name = extra_mem;
extra_mem += name_len + 1;
dbg(("partition %d: name <%s>, from %llx, size %llx\n",
this_part,
parts[this_part].name,
parts[this_part].from,
parts[this_part].size));
/* return (updated) pointer to extra_mem memory */
if (extra_mem_ptr)
*extra_mem_ptr = extra_mem;
/* return (updated) pointer command line string */
*retptr = s;
/* return partition table */
return parts;
}
/*
* Parse the command line.
*/
static int rkpart_setup_real(char *s)
{
cmdline_parsed = 1;
for( ; s != NULL; )
{
struct cmdline_rk_partition *this_rk;
struct rk_partition *parts;
int rk_id_len;
int num_parts;
char *p, *rk_id;
rk_id = s;
/* fetch <rk-id> */
if (!(p = strchr(s, ':')))
{
dbg(( "no rk-id\n"));
return 0;
}
rk_id_len = p - rk_id;
dbg(("parsing <%s>\n", p + 1));
/*
* parse one mtd. have it reserve memory for the
* struct cmdline_mtd_partition and the mtd-id string.
*/
parts = newpart(p + 1, /* cmdline */
&s, /* out: updated cmdline ptr */
&num_parts, /* out: number of parts */
0, /* first partition */
(unsigned char**)&this_rk, /* out: extra mem */
rk_id_len + 1 + sizeof(*this_rk) +
sizeof(void*)-1 /*alignment*/);
if(!parts)
{
/*
* An error occurred. We're either:
* a) out of memory, or
* b) in the middle of the partition spec
* Either way, this mtd is hosed and we're
* unlikely to succeed in parsing any more
*/
return 0;
}
/* align this_rk */
this_rk = (struct cmdline_rk_partition *)
ALIGN((unsigned long)this_rk, sizeof(void*));
/* enter results */
this_rk->parts = parts;
this_rk->num_parts = num_parts;
this_rk->rk_id = (char*)(this_rk + 1);
strlcpy(this_rk->rk_id, rk_id, rk_id_len + 1);
/* link into chain */
this_rk->next = partitions;
partitions = this_rk;
dbg(("rkid=<%s> num_parts=<%d>\n",
this_rk->mtd_id, this_rk->num_parts));
/* EOS - we're done */
if (*s == 0)
break;
s++;
}
return 1;
}
/*
* Main function to be called from the MTD mapping driver/device to
* obtain the partitioning information. At this point the command line
* arguments will actually be parsed and turned to struct mtd_partition
* information. It returns partitions for the requested mtd device, or
* the first one in the chain if a NULL mtd_id is passed in.
*/
static int parse_cmdline_partitions(sector_t n,
struct rk_partition **pparts,
unsigned long origin)
{
unsigned long from;
int i;
struct cmdline_rk_partition *part;
/* Fixme: parameter should be coherence with part table id */
const char *rk_id = "rk29xxnand";
/* parse command line */
if (!cmdline_parsed)
rkpart_setup_real(cmdline);
for(part = partitions; part; part = part->next)
{
if ((!rk_id) || (!strcmp(part->rk_id, rk_id)))
{
for(i = 0, from = 0; i < part->num_parts; i++)
{
if (part->parts[i].from == OFFSET_CONTINUOUS)
part->parts[i].from = from;
else
from = part->parts[i].from;
if (part->parts[i].size == SIZE_REMAINING)
part->parts[i].size = n - from - FROM_OFFSET;
if (from + part->parts[i].size > n)
{
printk(KERN_WARNING ERRP
"%s: partitioning exceeds flash size, truncating\n",
part->rk_id);
part->parts[i].size = n - from;
part->num_parts = i;
}
from += part->parts[i].size;
}
*pparts = kmemdup(part->parts,
sizeof(*part->parts) * part->num_parts,
GFP_KERNEL);
if (!*pparts)
return -ENOMEM;
return part->num_parts;
}
}
return 0;
}
static void rkpart_bootmode_fixup(void)
{
const char mode_emmc[] = " androidboot.mode=emmc";
const char mode_nvme[] = " androidboot.mode=nvme";
const char charger[] = " androidboot.charger.emmc=1";
char *new_command_line;
size_t saved_command_line_len = strlen(saved_command_line);
if (strstr(saved_command_line, "androidboot.mode=charger")) {
new_command_line = kzalloc(saved_command_line_len +
strlen(charger) + 1, GFP_KERNEL);
sprintf(new_command_line, "%s%s",
saved_command_line, charger);
} else {
new_command_line = kzalloc(saved_command_line_len +
strlen(mode_emmc) + 1, GFP_KERNEL);
if (strstr(saved_command_line, "storagemedia=nvme"))
sprintf(new_command_line, "%s%s",
saved_command_line, mode_nvme);
else
sprintf(new_command_line, "%s%s",
saved_command_line, mode_emmc);
}
saved_command_line = new_command_line;
}
int rkpart_partition(struct parsed_partitions *state)
{
int num_parts = 0, i;
sector_t n = get_capacity(state->bdev->bd_disk);
struct rk_partition *parts = NULL;
if (n < SECTOR_1G)
return 0;
if (!state->bdev->bd_disk->is_rk_disk)
return 0;
/* Fixme: parameter should be coherence with part table */
cmdline = strstr(saved_command_line, "mtdparts=");
if (!cmdline)
return 0;
cmdline += 9;
cmdline_parsed = 0;
num_parts = parse_cmdline_partitions(n, &parts, 0);
if (num_parts < 0)
return num_parts;
for (i = 0; i < num_parts; i++) {
put_partition( state,
i+1,
parts[i].from + FROM_OFFSET,
parts[i].size);
strcpy(state->parts[i+1].info.volname, parts[i].name);
printk(KERN_INFO "%10s: 0x%09llx -- 0x%09llx (%llu MB)\n",
parts[i].name,
(u64)parts[i].from * 512,
(u64)(parts[i].from + parts[i].size) * 512,
(u64)parts[i].size / 2048);
}
rkpart_bootmode_fixup();
return 1;
}